野菜類の脂質に関する研究 (第 2 報)*
——タケノコ油脂の不けん化物について——

北 村 光 雄**

は し が き
タケノコ油脂の脂肪酸については先に報告1 したが、今回その不けん化物について探索したのでその
大要を報告する。
タケノコ油脂の不けん化物に関する研究は表1、
竹油に付着する脂質物質2としてノナカサン、メリン
アルコール、メリン酸、洗点 246～250℃ の未知
結晶物質、樹脂様物質が見出されている。著者も
タケノコ油脂の不けん化物の中からノナカサン様物
質および洗点 240～243℃ の未知結晶物質をとり出
すことができた。

実 験 方 法
1. 試料（不けん化物）の分取
タケノコ油脂をアルコール性水酸化カリウム
でけん化し、冷後エーテルにて不けん化物を抽出し、水洗、乾燥、エーテル留去して不けん化
物をとる。
2. カラムクロマトグラフィー
カラム (20×300 mm) の底部に脱脂綿をつ
め、石油エーテルを 15 cm ぐらいの高さに入れ
る。つぎに吸着剤としてワコーシリカゲル B-0
15 g とセラライト 545, 5 g を混合したものを作
量ずつカラムに流し込むと、吸着剤は石油エーテ
ル層を通ってカラムの底部に沈む。最上部に
吸着剤の表層が乱されないために、無水硫酸ナ
トリウムの粉末を約 5 mm の層になるように
加える。カラム中の石油エーテルは下部のコック
を開いて滴下させ、石油エーテルの表面が無

表-1 溶出溶媒

(1) 石油エーテル
(2) 1% エーテル含有石油エーテル
(3) 5% エーテル含有石油エーテル
(4) 10% エーテル含有石油エーテル
(5) 50% エーテル含有石油エーテル
(6) エーテル
(7) 1% メタノール含有エーテル
(8) 5% メタノール含有エーテル
(9) 20% メタノール含有エーテル
(10) メタノール
(11) 5% 水酛酸含有エーテル

3. 薄層クロマトグラフィー
薄層クロマトグラフィー用 シリカゲル (ワコ
ーゲル B-10) 30 g に水 60 ml を加えて混和と
し、アプリケーターに流し込み、ガラス板にシ
リカゲルを 250 u の厚さに塗付した。10 分後
120℃ に 1 時間乾燥し、使用時まで乾燥剤
を入れた容器中に保存した。展開溶媒は石油エー
テル/エーテル/水酛 (70:30:1 v/v), ベンゼン/
クロロホルム/水酛 (90:10:1 v/v) などを用い,

* Studies on the Lipid of Vegetable. (Part 2)
On Unsaponifiable matter of Bamboo Lipid.
** Mitsuo Kitamura

(29)
実験結果と考察
1. 不けん化物の分離
前報タケノコ油脂 17.3 g を不けん化し、これより不けん化物 3.44 g (19.9%) を得た。この不けん化物は淡黄色固体で、融点 85～110°C, Libermann-Burchard 反応は陽性である。不けん化物の少量をベンゼンに溶し、薄層クロマトプレートにスポットし、石油エーテル/エーテル/石油醚 (70: 30: 1 v/v) の展開、50%硫酸で加熱炭化すると図-1 のように 3 つのスポットがあらわれ、なお原点にとどまるものがある。

2. カラムクロマトグラフィーによる分離
実験方法のカラムクロマトグラフィーの項で述べた方法で、不けん化物 1 g ずつ 4 回カラムクロマトグラフィーを行ない、表-2 のような収量結果を得た。

表-2 カラムクロマトグラフィーによる区分の性状

<table>
<thead>
<tr>
<th>区分</th>
<th>収量(%)</th>
<th>状態</th>
<th>最大吸収(mu)</th>
<th>イオン反応</th>
<th>ステレン反応</th>
<th>-OH基の反応</th>
<th>>CO基の反応</th>
<th>>C=C基の反応</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>11.0</td>
<td>液体、青白色粉末</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(2)</td>
<td>1.0</td>
<td>淡黄色</td>
<td>257</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(3)</td>
<td>1.9</td>
<td>白</td>
<td>257</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(4)</td>
<td>3.3</td>
<td>少量結晶</td>
<td>257</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(5)</td>
<td>39.8</td>
<td>固体、淡黄色</td>
<td>257</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(6)</td>
<td>24.0</td>
<td>淡黄色</td>
<td>257</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(7)</td>
<td>4.6</td>
<td>淡黄色</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(8)</td>
<td>4.3</td>
<td>淡黄色</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(9)</td>
<td>4.0</td>
<td>淡黄色</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(10)</td>
<td>2.1</td>
<td>半固体、淡黄色</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(11)</td>
<td>1.0</td>
<td>半固体、淡黄色</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

収量についてこれをグラフで示すと図-2のようにになり、(5), (6) 区分が非常に多いことがわかる。

(1)～(6) 区分の紫外外部吸収スペクトルについてでは、図-3, 図-4 に示すように最大吸収は 257 mu である。(7) 区分以下にはみられなかった。

(30)
図-2 カラムクロマトグラフィーにおける展開液量と収量

図-3 (1)〜(3) 区分の紫外外部吸収スペクトル
次に各区分についてナトリウム融解を行ない、塩素、ハロゲン、イオウの検出を行なった。その結果、塩素、ハロゲンはいずれの区分にも含まれていないが、イオウは全区分に含まれる。さらに水酸基、カルボニル基、エチレン基などの検出には、それぞれアルカリアルキルキサンテート試験、2,4ジニトロフェニルヒドラジン試験、過マンガン酸カリウム試験により行ない、その結果は表-2のとおりである。なおステリンの反応はLibermann-Burchard反応である。

3. 薄層クロマトグラフィーによる成分の検出

カラムクロマトグラフィーで分離した各区分をベンゼンに溶し、これを薄層クロマトグラフィーのシリカゲルプレートにスポットし、ベンゼン/クロロホルム/水酢（90:10:1v/v）で展開し、50%硫酸で顕色した結果は図-5である。
野菜類の脂質に関する研究（第2報）

(1)～(4) 区分では Rf の大きいスポットが1個あられ、(6)～(8) 区分では Rf の小さいスポットが1個あられました。9)～(11) 区分では原点にとどまる。
次に (1)～(4) 区分を n-ヘキサンで展開すると、図—6 の (a) および 1個のスポットであったものが 3～4個のスポットに分れた。また (5)～(8) 区分を石油エーテル/エーテル/水酛 (70 : 30 : 1 v/v) で展開すると、図—6 の (b) のように 4～5 個のスポットに分れた。9)～(11) 区分をエーテル/メタノール (95 : 5 v/v) で展開すると、図—6 の (c) のように 2～3 個のスポットに分離した。

図—6 展開溶媒を異にしたクロマトグラム

以上の結果からカラムクロマトグラフィーによって不近く化物を揮性の弱い区分と比較的強い区分に分けることができた。

4. 各区分から純物質の単離

(1) 区分 少量のアセトンを加えて温浴溶解して室温に放置すると、融点 59～62°C の白色結晶を得た。さらにアセトン、酢酸エチルより再結すると融点 63～64°C の結晶となる。この結晶は基体四酸化炭素溶液を脱色しない。少量でこれ以上精査できなかったが、おそらく飽和の水素化物質と考える。川上は竹材に付着する糖類物質の飽和の炭化水素 nonacosane を分離している。

(1) の液液部分をアセトンから氷冷して、できるだけ結晶物質を除き、これをシリカゲルの薄膜クロマトプレートにつけ、ヘキサンで展開すると、図—6 の (a)—(1) のような 4つのスポットを与える。単一の物質でないと認められる。

(5), (6) 区分 不近く化物中もっとも多い (約 64%) 区分で、アセトンより反応再結して、融点 136～137°C の結晶の 2.1 g を得た。この結晶を 0.2 g とり、常法によりアセチル化し、アセトン、メタノールより再結し、融点 127～128°C
の結晶を得た。この結晶をけん化し、アセトンより再結し、融点 137～138℃の結晶を得た。以上の結果よりこのステリンは β-sitosterol である。ステリンを除いた部分 (約 0.3 g) は淡黄赤色の粘稠物質であるが、薄層クロマトグラフィーの結果、なお相当量のステリンを含む。

(8), (9) 区分 この区分にアセトンを加えて温溶解し、アセトン可溶部と不溶部とに分けた。不溶部はこれをベンゼンで同様処理して可溶部と不溶部とに分け、不溶部をアルコールより再結し、さらにジオキサンより再結し、融点 240～243℃の白色結晶を得た。またアルコールの溶液区分より、融点 258～260℃の白色結晶を得た。この 2 種の結晶をジオキサンに溶し、薄層プレートに溶けて、エーテル/メタノール (95:5 v/v) で展開し、50% 硫酸で顔色すると図-7 のようなクロマトグラムが得られた。未だ不純であるが、試料少量にして再結できなかった。川上が竹押に付着する蠟様物質より、未知物質として融点 246～250℃のものをとっているが、これに相当するものと考えられる。

要 約
1. タケノコ油より分離した不けん化物をカラムクロマトグラフィーにより 11 区分に分けた。
2. 各区分を定量し、薄層クロマトグラムのスポットの数によって、その成分の種類を推定した。
3. 収量の多い区分から純物質の単離を試みた。(1) 区分より nonacosane と考えられる飽和炭化水素、(5), (6) 区分より β-sitosterol、(8), (9) 区分より融点 240～243℃と 258～260℃の白色結晶未知物質を得た。

文 献
1）北村ら；本誌、第 8 集 72 (1964)
2）川上；理研 4, 205 (1925), 農化, 1, 500 (1925)
3）横本庸平；薄層クロマトグラフィー (1963)
4）杉山登；有機化合物の微量確認法 (1957)