Note on Radius of Posets Whose Double Bound Graphs Are the Same

Shin-ichi IWAI, Kenjiro OGAWA and Morimasa TSUCHIYA

Department of Mathematical Sciences, Tokai University Hiratsuka 259-1292, JAPAN e-mail:tsuchiya@ss.u-tokai.ac.jp

Abstract

In this paper, we consider some properties on a family $\mathcal{P}_{DB}(G)$ of posets whose corresponding double bound graphs are the same graph G. We deal with distances of posets in $\mathcal{P}_{DB}(G)$. Furthermore we consider the radius of $\mathcal{P}_{DB}(G)$ and extremal graphs on radii.

Introduction

In this paper, we consider finite undirected simple graphs. For a poset $P=(X, \leq)$ and $x \in X$, $L_P(x)=\{y \in X \; ; \; y < x\}$ and $U_P(x)=\{y \in X \; ; \; y > x\}$. Max(P) is the set of all maximal elements of P. Min(P) is the set of all minimal elements of P.

For a poset $P = (X, \leq)$, the double bound graph (DB-graph) is the graph $DB(P) = (X, E_{DB(P)})$, where $uv \in E_{DB(P)}$ if and only if $u \neq v$ and there exist $m, n \in X$ such that $n \leq u, v \leq m$. We say that a graph G is a DB-graph if there exists a poset whose double bound graph is isomorphic to G. This concept was introduced by McMorris and Zaslavsky [3].

A characterization of double bound graphs can be found in [1] as follows: For a graph G with two disjoint independent subsets M and N of V(G) and $v \in V(G) - (M \cup N)$, define the sets $U(v) = \{u \in M \; ; \; uv \in E(G)\}, L(v) = \{u \in N \; ; \; uv \in E(G)\}.$ A clique in the graph G is the vertex set of a maximal complete subgraph, and a family $\mathcal C$ of complete subgraphs edge covers G if and only if for each edge $uv \in E(G)$, there exists $C \in \mathcal C$ such that $u, v \in C$.

Theorem 1 (D. Diny [1]) A graph G is a DB-graph if and only if there exists a family $C = \{C_1, ..., C_n\}$ of complete subgraphs of G and disjoint independent subsets M and N such that

- (1) C edge covers G,
- (2) for each C_i , there exist $m_i \in M$, $n_i \in N$ such that $\{m_i, n_i\} \subseteq C_i$ and $\{m_i, n_i\} \not\subseteq C_j$ for all $i \neq j$, and

(3) for each $v \in V(G)-(M \cup N)$, $|U(v)| \times |L(v)|$ equals the number of elements of $\mathcal C$ containing v.

Furthermore, a family C is the unique, minimal edge covering family of cliques in G. \Box

For a DB-graph G and an edge clique cover $\mathcal{C} = \{C_1, C_2, ..., C_n\}$ satisfying the conditions of Theorem 1, M is an upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ of G and N is a lower kernel $\mathrm{LK}_{\mathrm{DB}}(G)$ of G. In the following sections, we consider a fixed labeled DB-graph G with a fixed upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ and a fixed lower kernel $\mathrm{LK}_{\mathrm{DB}}(G)$.

For a DB-graph G, $\mathcal{P}_{DB}(G) = \{P \; ; \; DB(P) = G, Max(P) = UK_{DB}(G), Min(P) = LK_{DB}(G)\}$. Then $\mathcal{P}_{DB}(G)$ is a poset by set inclusions. In [2] and [5], we deal with a distance of posets in $\mathcal{P}_{DB}(G)$ and we obtain the diameter of $\mathcal{P}_{DB}(G)$. In this paper we consider some properties on the radius of $\mathcal{P}_{DB}(G)$.

1. Preliminary

For a DB-graph G, the double canonical poset of G is the poset $d_can(G) = (V(G), \leq_{d_can(G)})$, where $x \leq_{d_can(G)} y$ if and only if:

- (1) $y \in \mathrm{UK}_{\mathrm{DB}}(G)$ and $xy \in E(G)$, or
- (2) $x \in LK_{DB}(G)$ and $xy \in E(G)$, or
- (3) x = y.

Then for a DB-graph G, d_can(G) is the minimum poset of $\mathcal{P}_{DB}(G)$.

Let x and y be two distinct elements of poset P. Suppose that $x \notin \operatorname{Min}(P), y \notin \operatorname{Max}(P)$ and x is covered by y. Then, another poset $P_{x < y}^{--}$ is obtained from P by subtracting the relation $x \leq y$ from P, and we call this transformation the d_deletion of x < y (x < y-d_deletion). Now let x and y be mutually incomparable elements in P such that $x \notin \operatorname{Min}(P), y \notin \operatorname{Max}(P), U_P(y) \subseteq U_P(x)$ and $L_P(y) \supseteq L_P(x)$. Then, a poset $P_{x < y}^{++}$ is obtained from P by adding the relation $x \leq y$ to P. We call this transformation the d_addition of x < y (x < y-d_addition).

We easily obtain the following facts on these transformations. Any posets P and $P_{x < y}^{--}$ have the same DB-graph, and P and $P_{x < y}^{++}$ also have the same DB-graph. Moreover x < y-d_addition and x < y-d_deletion are inverse transformations of each other. By these facts, we obtain the following result on transformations between posets.

Theorem 2 (H. Era, K. Ogawa and M. Tsuchiya [2]) Let G be a DB-graph and let P and Q be two posets in $\mathcal{P}_{DB}(G)$.

- (1) P can be transformed into Q by a sequence of d_deletions and d_additions of order relations.
- (2) Every poset in $\mathcal{P}_{\mathrm{DB}}(G)$ is obtained from $\mathrm{d_can}(G)$ by $\mathrm{d_additions}$ only. \square

For a DB-graph G with an upper kernel $\mathrm{UK_{DB}}(G)$ and a lower kernel $\mathrm{LK_{DB}}(G)$, and $x \in V(G) - (\mathrm{UK_{DB}}(G) \cup \mathrm{LK_{DB}}(G))$, $\mathrm{Ma}(x) = \{y \in \mathrm{UK_{DB}}(G); xy \in E(G)\}$, $\mathrm{Mi}(x) = \{y \in \mathrm{LK_{DB}}(G); xy \in E(G)\}$. Furthermore we also know some properties on a maximal poset.

Theorem 3 (H. Era, K. Ogawa and M. Tsuchiya [2]) Let G be a DB-graph with an upper kernel $UK_{DB}(G)$ and a lower kernel $LK_{DB}(G)$, and P be a maximal poset on $\mathcal{P}_{DB}(G)$.

- (1) For all $x, y \in V(G) (\mathrm{UK_{DB}}(G) \cup \mathrm{LK_{DB}}(G))$ such that $Ma(x) \neq Ma(y)$ or $Mi(x) \neq Mi(y), x \leq_P y$ if and only if $Ma(x) \supseteq Ma(y)$ and $Mi(x) \subseteq Mi(y)$.
- (2) For all $x, y \in V(G) (UK_{DB}(G) \cup LK_{DB}(G))$ such that Ma(x) = Ma(y) and Mi(x) = Mi(y), x is comparable with y. \square

Based on these results, we deal with distances of posets whose DB-graphs are the same.

In a DB-graph G with an upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ and a lower kernel $\mathrm{LK}_{\mathrm{DB}}(G)$, the distance between posets P and Q in $\mathcal{P}_{\mathrm{DB}}(G)$, denoted by $d_{\mathrm{DB}}(P,Q)$, is the minimum number of transformations from P to Q by d_deletions and d_additions. The $diameter\ d(X)$ is $max\{d_{\mathrm{DB}}(P,Q);P,Q\in X\}$. For a DB-graph with an upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ and a lower kernel $\mathrm{LK}_{\mathrm{DB}}(G)$, and two subsets $S\subseteq \mathrm{UK}_{\mathrm{DB}}(G),T\subseteq \mathrm{LK}_{\mathrm{DB}}(G)$,

$$I(S,T) = \bigcap_{\substack{m \in S, \\ n \in T}} N_G(n,m) - \bigcup_{\substack{m \in \text{UK}_{DB}(G) - S, \\ n \in \text{LK}_{DB}(G) - T}} N_G(n,m),$$

where $N_G(n,m) = \{v \in V(G); vn, vm \in E(G)\}$. For a DB-graph with an upper kernel $UK_{DB}(G)$ and a lower kernel $LK_{DB}(G)$, let Σ_1^d and Σ_2^d denote the following:

$$\Sigma_{1}^{d} = \sum_{\substack{\emptyset \neq S \subseteq \mathrm{UK}_{\mathrm{DB}}(G), \\ \emptyset \neq T \subseteq \mathrm{LK}_{\mathrm{DB}}(G)}} \binom{|I(S,T)|}{2},$$

$$\Sigma_2^d = \sum_{\substack{\emptyset \neq S_1 \subseteq S_2 \subseteq \mathrm{UK}_{\mathrm{DB}}(G), \\ \emptyset \neq T_2 \subseteq T_1 \subseteq \mathrm{LK}_{\mathrm{DB}}(G), \\ S_1 \neq S_2 \text{ or } T_1 \neq T_2}} (|I(S_1, T_1)| \times |I(S_2, T_2)|)$$

Then Σ_1^d is the number of pairs $x,y \in V(G) - (\mathrm{UK_{DB}}(G) \cup \mathrm{LK_{DB}}(G))$ such that $\mathrm{Ma}(x) = \mathrm{Ma}(y)$ and $\mathrm{Mi}(x) = \mathrm{Mi}(y)$, and Σ_2^d is the number of pairs $x,y \in V(G) - (\mathrm{UK_{DB}}(G) \cup \mathrm{LK_{DB}}(G))$ such that $\mathrm{Ma}(x) \neq \mathrm{Ma}(y)$ or $\mathrm{Mi}(x) \neq \mathrm{Mi}(y)$, and $\mathrm{Ma}(x) \subseteq \mathrm{Ma}(y)$ and $\mathrm{Mi}(x) \supseteq \mathrm{Mi}(y)$.

For $P,Q \in \mathcal{P}_{DB}(G)$, $[P,Q] = \{R \in \mathcal{P}_{DB}(G); P \leq_{\mathcal{P}_{DB}(G)} R \leq_{\mathcal{P}_{DB}(G)} Q\}$. We already know the followings.

Theorem 4 (H. Era, K. Ogawa and M. Tsuchiya [2]) Let G be a DB-graph with an upper kernel $UK_{DB}(G)$ and a lower kernel $LK_{DB}(G)$, and P_{\max}^d be a maximal poset in $\mathcal{P}_{DB}(G)$. Then

$$d([\operatorname{d_can}(G), P_{\max}^d]) = \Sigma_1^d + \Sigma_2^d.$$

Theorem 5 (H. Era, K. Ogawa and M. Tsuchiya [2]) For a DB-graph G with an upper kernel $UK_{DB}(G)$ and a lower kernel $LK_{DB}(G)$,

$$d(\mathcal{P}_{\mathrm{DB}}(G)) = 2\Sigma_1^d + \Sigma_2^d.$$

2. The radius of $\mathcal{P}_{DB}(G)$

In this section, we consider the radius of $\mathcal{P}_{DB}(G)$. The eccentricity e(P) is $max\{d_{DB}(P,Q); Q \in \mathcal{P}_{DB}(G)\}$. The radius $r(\mathcal{P}_{DB}(G))$ is $min\{e(P); P \in \mathcal{P}_{DB}(G)\}$. We have the following result.

Proposition 6 For a DB-graph G with an upper kernel $UK_{DB}(G)$ and a lower kernel $LK_{DB}(G)$,

$$\Sigma_1^d + \lceil \Sigma_2^d/2 \rceil \le r(\mathcal{P}_{\mathrm{DB}}(G)) \le \Sigma_1^d + \Sigma_2^d.$$

Proof. By the definitions of the diameter and the radius, $r(\mathcal{P}_{\mathrm{DB}}(G)) \leq d(\mathcal{P}_{\mathrm{DB}}(G)) \leq 2r(\mathcal{P}_{\mathrm{DB}}(G))$. Therefore $\Sigma_1^d + \lceil \Sigma_2^d/2 \rceil = \lceil d(\mathcal{P}_{\mathrm{DB}}(G))/2 \rceil \leq r(\mathcal{P}_{\mathrm{DB}}(G))$. By Theorem 4, $d(\lceil \mathrm{d_can}(G), P_{\mathrm{max}}^d \rceil) = \Sigma_1^d + \Sigma_2^d$ and $e(\mathrm{d_can}(G)) = \Sigma_1^d + \Sigma_2^d$. Thus $r(\mathcal{P}_{\mathrm{DB}}(G)) \leq \Sigma_1^d + \Sigma_2^d$. \square

Next we consider graphs for which the equalities in Proposition 6 are hold. We have the following results.

Proposition 7 Let G be a DB-graph with an upper kernel $UK_{DB}(G)$ and a lower kernel $LK_{DB}(G)$. For any elements $x, y \in V(G) - (UK_{DB}(G) \cup LK_{DB}(G))$ such that $Ma(x) \supseteq Ma(y)$ and $Mi(x) \subseteq Mi(y)$, if there exist no elements $z \in V(G) - (UK_{DB}(G) \cup LK_{DB}(G))$ such that $Ma(x) \supseteq Ma(z) \supseteq Ma(y)$ and $Mi(x) \subseteq Mi(z) \subseteq Mi(y)$, then $r(\mathcal{P}_{DB}(G)) = \Sigma_1^d + \Sigma_2^d$.

Proof. Let G be a graph satisfying the conditions. For a comparable pair $x,y\in V(G)-(\mathrm{UK_{DB}}(G)\cup\mathrm{LK_{DB}}(G))$ of a poset $P\in\mathcal{P}_{\mathrm{DB}}(G)$ such that $\mathrm{Ma}(x)\supseteq\mathrm{Ma}(y)$ and $\mathrm{Mi}(x)\subseteq\mathrm{Mi}(y)$, we can obtain $P_{x<y}^{--}$ by a d_deletion on x< y. Furthermore for an incomparable pair $x,y\in V(G)-(\mathrm{UK_{DB}}(G)\cup\mathrm{LK_{DB}}(G))$ of a poset $P\in\mathcal{P}_{\mathrm{DB}}(G)$ such that $\mathrm{Ma}(x)\supseteq\mathrm{Ma}(y)$ and $\mathrm{Mi}(x)\subseteq\mathrm{Mi}(y)$, we can obtain $P_{x<y}^{++}$ by an addition on x< y. Therefore for a poset $P\in\mathcal{P}_{\mathrm{DB}}(G)$, we can obtain a poset $Q\in\mathcal{P}_{\mathrm{DB}}(G)$ such that if $x\leq_P y$ and $\mathrm{Ma}(x)\supseteq\mathrm{Ma}(y)$ and $\mathrm{Mi}(x)\subseteq\mathrm{Mi}(y)$, then x is incomparable to y in Q, and if x is incomparable to y in P and $\mathrm{Ma}(x)\supseteq\mathrm{Ma}(y)$ and $\mathrm{Mi}(x)\subseteq\mathrm{Mi}(y)$, then $x\leq_Q y$. Hence for any poset $P\in\mathcal{P}_{\mathrm{DB}}(G)$, $e(P)\geq\Sigma_1^d+\Sigma_2^d$. Thus $r(\mathcal{P}_{\mathrm{DB}}(G))\geq\Sigma_1^d+\Sigma_2^d$. By Theorem 4, $r(\mathcal{P}_{\mathrm{DB}}(G))=\Sigma_1^d+\Sigma_2^d$. \square

We define a special poset in $\mathcal{P}_{DB}(G)$. For a DB-graph G, the double neutral poset of G is the poset $d_{-neu}(G) = (V(G), \leq_{d_{-neu}(G)})$, where $x \leq_{d_{-neu}(G)} y$ if and only if

- (1) $y \in UK_{DB}(G)$ and $xy \in E(G)$, or
- (2) $x \in LK_{DB}(G)$ and $xy \in E(G)$, or
- (3) x = y, or
- (4)(a) $Ma(x) \neq Ma(y)$ or $Mi(x) \neq Mi(y)$, and
 - (b) $Ma(x) \supseteq Ma(y)$, and
 - (c) $Mi(x) \subseteq Mi(y)$.

We have the following result.

Lemma 8 For a poset P in $\mathcal{P}_{DB}(G)$, there exists a poset Q in $[d_{-}can(G), d_{-}neu(G)]$ such that for any $x, y \in V(Q), x \leq_Q y$ if and only if $x \leq_P y$ and $x \leq_{d_{-}neu(G)} y$.

Proof. We construct a poset Q from P as follows: (1)V(P) = V(Q) (2) if $x \leq_P y$ and $x \leq_{\operatorname{d_neu}(G)} y$, then $x \leq_Q y$. Then Q is the intersection of P and $\operatorname{d_neu}(G)$. Therefore Q is a poset in $\mathcal{P}_{\operatorname{DB}}(G)$ and $Q \in [\operatorname{d_neu}(G), \operatorname{d_neu}(G)]$. \square

Noting that a poset Q of Lemma 8 is obtained from P by d_deletions only, we know that the poset P is obtained from Q by d_additions only. Thus we have the following result.

Proposition 9 Let G be a DB-graph with an upper kernel $UK_{DB}(G)$ and a lower kernel $LK_{DB}(G)$. If $V(G) - (UK_{DB}(G) \cup LK_{DB}(G)) = \{u_1, u_2, u_3, v_1, ..., v_n\}$ satisfies the following conditions, then $r(\mathcal{P}_{DB}(G)) = \sum_{1}^{d} + \lceil \sum_{2}^{d}/2 \rceil$:

- (1) $\operatorname{Ma}(u_i) \supseteq \operatorname{Ma}(u_j)$ and $\operatorname{Mi}(u_i) \subset \operatorname{Mi}(u_j)$, or $\operatorname{Ma}(u_i) \supset \operatorname{Ma}(u_j)$ and $\operatorname{Mi}(u_i) \subseteq \operatorname{Mi}(u_j)$ for $1 \le i < j \le 3$,
- (2) $Ma(u_i) \parallel Ma(v_j)$ or $Mi(u_i) \parallel Mi(v_j)$ for $\forall i = 1, 2, 3$ and $\forall j = 1, ..., n$, or
- (3) $\operatorname{Ma}(v_i) \not\supset \operatorname{Ma}(v_j)$ and $\operatorname{Mi}(v_i) \not\subset \operatorname{Mi}(v_j)$ for $\forall i, j (i \neq j)$.

Proof. By Lemma 8, for a poset $P \in \mathcal{P}_{DB}(G)$, there exists a poset $Q \in [\operatorname{d_can}(G), \operatorname{d_neu}(G)]$ such that $d_{DB}(P,Q) \leq \Sigma_1^d$. By the condition (1), $\Sigma_2^d = 3$. Let R be a poset in $\mathcal{P}_{DB}(G)$, whose relations are the relations of $\operatorname{d_can}(G)$ and the followings: $u_1 \leq_R u_3$, $u_1 \not\leq_R u_2$ and $u_2 \not\leq_R u_3$. Then for any poset $Q \in [\operatorname{d_can}(G), \operatorname{d_neu}(G)]$, $d_{DB}(Q,R) \leq 2 = \lceil \Sigma_2^d/2 \rceil$. Therefore for a poset $P \in \mathcal{P}_{DB}(G)$, $d_{DB}(P,R) \leq d_{DB}(P,Q) + d_{DB}(Q,R) \leq \Sigma_1^d + \lceil \Sigma_2^d/2 \rceil$. By Proposition 6, $r(\mathcal{P}_{DB}(G)) = \Sigma_1^d + \lceil \Sigma_2^d/2 \rceil$. \square

Acknowledgments.

Authors thank Prof. H. Era for his valuable suggestions.

References

- [1] D.Diny, The double bound graph of a partially ordered set, Journal of Combinatorics, Information & System Sciences, 10(1985),52-56.
- [2] H. Era, K. Ogawa and M. Tsuchiya, On transformations of posets which have the same bound graph, accepted in Discrete Mathematics.
- [3] F. R. McMorris and T. Zaslavsky, Bound graphs of a partially orders set, Journal of Combinatorics, Information & System Sciences, 7(1982),134-138.
- [4] K. Ogawa, On distances of posets with the same upper bound graphs, Yokohama Mathematical Journal, 47(1999), 231-237.
- [5] K. Ogawa and M. Tsuchiya, Note on distances of posets whose double bound graphs are the same, preprint.

(論文:同じ双界グラフを持つ半順序集合の族の半径について 著者:いわい しんいち,おがわけんじろう,東海大学大学院理学研究科,つちやもりまさ,東海大学理学部 受付:平成12年12月22日)