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Abstract

   Let A and B be two disjoint sets of points in the plane such that no three points of AUB are 

collinear, and let n be the number of points in A. A geometric complete bipartite graph K(A, B) is a 

complete bipartite graph with partite sets A and B which is drawn in the plane such that each edge of 

K(A, B) is a straight-line segment. We prove that 

(i) If I B I > (n + 1)(2n - 4) + 1, then the geometric complete bipartite graph K (A, B) contains a path P 

without crossings such that V(P) contains the set A. 

(ii) There exists a configuration of A U B with I B + n - 1 such that in K (A, B) every path                                   16 2 

containing the set A has at least one crossing.

1 Introduction

Let G be a finite graph without loops or multiple edges. We denote by V(G) and E(G) the set of 

vertices and the set of edges of G respectively. For a vertex v of G we denote by degG (V) the degree of 

v in G. For a set X we denote by I X I the cardinality of X. A geometric graph G=(V(G), E(G)) is a 

graph drawn in the plane such that V(G) is a set of points in the plane, no three of which are collinear, 

and E (G) is a set of (possibly crossing) straight-line segments whose endpoints belong to V(G). If a 

geometric graph G is a complete bipartite graph with partite sets A and B i.e., V(G)=AUB then G is 
denoted by K(A, B), which may be called a geometric complete bipartite graph. 

   In 1996, M. Abellanas, J. Garcia, G. Herndndez, M. Noy and P. Ramos [1] showed the following 

result.
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Theorem A (Abellanas et al. [1]) Let A and B be two disjoint sets of points . in the plane such that I A 
    B I and no three points of A U B are collinear. Then the geometric complete bipartite graph K(A, B) 

contains a spanning tree T without crossings such that the maximum degree of T is 0 log( I A 

 In 1999, Kaneko [3] improved their result and proved the following theorem. 

Theorem B (Kaneko [3]) Let A and B be two disjoint sets of points in the plane such that I A I B I 

and no three points of A U B are collinear. Then the geometric complete bipartite graph K(A, B) contains 

a spanning tree T without crossings such that the maximum degree of T is at most 3. 

   It is well-known that under the same condition in Theorem B, there are configurations of A U B such 

that K(A, B) does not contain a hamiltonian path without crossings (i.e., a spanning tree of maximum 

degree at most 2 without crossings) (see [2]). So we are led to the following problem. Given two disjoint 

sets A and B of points in the plane such that no three points of A U B, are collinear, if I B I is large 

compared with I A , then does K(A, B) contain a path P without crossings such that V(P) contains the 

set A? The answer to the above question is in the affirmative, as we shall see now. We prove the 

following theorem. 

Theorem 1 Let A and B be two disjoint sets of points in the plane such that no three Points of A U 

B are collinear, I and let n be the number of points in A. 

(i) If B (n + 1) (2n - 4) + 1, then the geometric complete bipartite graph K(A, B) contains a path P 

without crossings such that V (P contains the set A. 

(ii) There exists a configuration of A U B with I B I iE + n 1 such that in K(A, B) every path                                   16 2 
containing the set A has at least one crossing. 

In order to prove Theorem 1, we need some notation and definitions. For a set X of points in the plane, 

we denote by conv(X) the convex hull of X. The boundary of conv(X) is a polygon whose segments 

and extremes are called the edges and the vertices of conv(X), respectively. For two points x and y in 

the plane, we denote by xy the straight line segment joining x to y which may be an edge of a 

geometric graph containing both x and y as it vertices. Let A be a set of point in the plane, let y be a 
vertex.of conv(A) and let x be a point exterior to conv(A). Then we say that x sees y on conv(A) if the 

line segment xy intersects conv(A) only at y. 

Lemma 2 Let R and S be disjoint sets of points in the plane with I R > S I such that no three 

points of R U S are collinear, and let I be a line in the plane separating the set R and the set S. Let x and 

y be two vertices of conv(R U S) with. x E R and y E=- S such that xy is an edge of conv(R U S). Then in K(R, 
S) there exists a path P without crossings such that 

(i) the vertex x is an end of P, and 

(ii) V(P) contains S. 

Proof We prove the lemma by induction on I R U S I If I S 1 then the lemma follows immediately, 

and so we may assume I R I ~L I S 1 _~!12. Let zo be the vertex of conv(R U S) with zo C R such that xzo is 

an edge of conv(R U S). We consider conv(R U S - { x}). Let Z = {zl, Z2, - - -, Zm} be the set of new
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vertices of conv(R US - {x}) (possibly Z = 0), i.e., zi, Z2, ..., z. are interior point of conv(R U S). Set z. + I 

 y. Since I R ~ {x) I > 1 and I S I (-~~ 2) > 1, there exist two vertices of conv(R U S '~- {x 1) zi and zi + 1 

such that zi E=- R and zi + I C S, i.e., zi zi + i is an edge of conv (R U S - {x}). It is clear that the vertex x sees 

zi + I on conv(R U S - {x)). Now we consider conv(R U S - Jx, Zi + 1 1). Let Z'= {wl, W2. ... ~ w} be the set 

of new vertices of conv(R U S - {x, zi + 1 1)(possibly Z'= 0), i.e., wi, W2, Wk are interior points of 

conv(R U S - {x}). LetWk+l be the vertex of conv (R U S - I x 1) withWk + I EE S such that zi + 1wk+1 is an 

edge of conv(R U S - {x}). Set wo = zi. Since I R - {x} I and I S - {zi + 1 1, by repeating the 

above method, there exist two vertices wj and wj + 1 of conv(R U S - {x, zi + I }), such that wj E=- R and wj + I 

E=- S i.e., wj wj + I is an edge of conv(R U S - {x, zi + I }), and such that the vertex zi + I sees wj on conv(R 

U S - {x, zi + I }). By the induction hypothesis, in K(R - Jx}, S ~- {zi + I there exists a path P' without 

crossings such that 

(i) the vertex wj (E=- R ) is an end of P', and 

(ii) V(P') contains S - Jzi + I }. 

Obviously P = P' U xzi + I U zi + lwj is the desired path. 

 Now we proceed to prove part (i) of Theorem 1. We may a9sume that no two points of A U B have 

the same x coordinate. Let a,, a2, ... a,, be points of S sorted by their x-coordinate and let Pi be the 

vertical line which passes through the point ai, 1 < i < n. These n lines separa te the plane into n + 1 

regions and hence they separate the set B into n + 1 disjoint subsets. Assume that these lines are 

directed upward. By the assumption, at least one subset contains at least 2n - 3 points of B. We may 

assume that one of the region which contains at least 2n - 3 points of B is bounded by the lines Pj and 

Pi + 1, I< j < n - 1. (The leftmost and rightmost unbounded regions can be treated similarly.) Let Bj be 

the subset of B between Pj and Pj + I i.e., I Bj I > 2n - 3. Let 10 be the line between. Pj and Pj + 1 satisfying 

the following conditions: 

(i) lo passes through a point bo of Bj and is directed upward, 

(ii) Let B, be the subset of Bj - {bo} to the left of lo and let B, be the subset of Bj - {bo} to the right of 

lo. Then A I > 2f-7-:2 and I B, I > 2n - 2j - 2. 

   Let A, be the subset of A to the left of lo and let A, be the subset of A to the right of lo. Trivially  

I All =jand I A,I=n-j. Lett, andt2 be the two rays emanating from bo such that ti is tangent to 

conv(Al) at wi, 1 < i < 2, and ti is above t2. Also let t3 and t4be the two rays emanating from bo such 

that ti is tangent to conv(A,) at wi, 3 < i < 4, and t3 is above t4. (Notice that since no three points of A 

U B are collinear, each ray contains no point of B, U B,,.) Let B+1 be the subset of B, above the ray t2 

and BT the subset of A under the ray ti. Also let Br+ be the subset of B, above the ray t4 and B r- the 

                               -~!12j-2, we have either I B+ I >j-1 or I A 1-~~j-l, say subset of Br under the ray t3. Since I B, I I  

I B+ I > j - 1. Similarly we have either I B + I r r    I r -~!~n-j-l or I B- 1-~!~n-j-l, say I B+ 1-~!jn-

j - 1. Consider now K(B+1 U lbo}, A,). Since I B+1 U {bo} I > j = I A, 1, applying Lemma 2 and letting 
x = bo, in K(B +1 U {bo}, A,) we can find a path R, without crossings such that 

(i) the vertex bo is an end of Rl, and 

(ii) V(Rl) contains A,. 

In a similar manner, in K(Br+) U {bo 1, Ar) we can find a path Rr without crossings such that 

(i) the vertex bo is an end of Rr, and
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(ii) V (R,) contains A,. 

Set P = R, U R,. Clearly P is a path in K(A, B) without crossings such that V(P) contains the set A. 

   In order to show part (ii) of Theorem 1, suppose that n U and all points of A U B lie on a cycle 

in the following order: 

 0 0 a I , a02' ...' ak+2, bol, b02, ..., bok, all, a2l, b1l, b2l, ..., b 
 2 2 2 2 2 k-2 k-2 k-2 k-2 k-2 af, a2, bl, b2' ..., bk . ... ... .... al a2 , bi , b2 bk 

  k-1 k-1 k- 1 k- 1 k-1 k-1 al , a2 ak+2, bi b2 b3k- 1, 

where aj"s are points in A and bj"s are points in B. It is not difficult to show that A n and B 
n 2 

f6- + I and that in K(A, B) every path containing the set A has at least one crossing. 2 
 This completes the proof of Theorem 1. F-1 
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