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Abstract

Let A and B be two disjoint sets of points in the plane such that no three points of AUB are
collinear, and let n be the number of points in A. A geometric complete bipartite graph K (A, B) is a
complete bipartite graph with partite sets A and B which is drawn in the plane such that each edge of
K (A, B) is a straight-line segment. We prove that
@ If | B| >(n+1)(2n—4)+1, then the geometric complete bipartite graph K (A, B) contains a path P
without crossings such that V(P) contains the set A.

(ii) There exists a configuration of AUB with | B| = % + —g— — 1 such that in K(A4, B) every path
containing the set A has at least one crossing.

1 Introduction

Let G be a finite graph without loops or multiple edges. We denote by V(G) and E(G) the set of
vertices and the set of edges of G respectively. For a vertex v of G we denote by degs(v) the degree of
v in G. For a set X we denote by | X | the cardinality of X. A geometric graph G=(V(G), E(G)) is a
graph drawn in the plane such that V(G) is a set of points in the plane, no three of which are collinear,
and E(G) is a set of (possibly crossing) straight-line segments whose endpoints belong to V(G). If a
geometric graph G is a complete bipartite graph with partite sets A and B i.e., V(G)=AUB then G is
denoted by K(A, B), which may be called a geometric complete bipartite graph.

In 1996, M. Abellanas, J. Garcfa, G. Herndndez, M. Noy and P. Ramos [1] showed the following
result.



Theorem A (Abellanas et al. [1]) Let A and B be two disjoint sets of points in the plane such that |A
| =|B| and no three points of AUB are collinear. Then the geometric complete bipartite graph K(A, B)
contains a spanning tree T without crossings such that the maximum degree of T is O log(| A |).

In 1999, Kaneko [3] improved their result and proved the following theorem.

Theorem B (Kaneko [3]) Let A and B be two disjoint sets of points in the plane such that |A| =|B|
and no three points of AUB are collinear. Then the geometric complete bipartite graph K(A, B) contains

a spanning tree T without crossitigs such that the maximum degree of T is at most 3.

It is well-known that under the same condition in Theorem B, there are configurations of AU B such
that K(A, B) does not contain a hamiltonian path without crossings (i.e., a spanning tree of maximum
degree at most 2 without crossings) (see [2]). So we are led to the following problem. Given two disjoint
sets A and B of points in the plane such that no three points of AU B-are collinear, if | B | is large
compared with | A |, then does K(4, B) contain a path P without crossings such that V(P) contains the
set A? The answer to the above question is in the affirmative, as we shall see now. We prove the
following theorem.

Theorem 1  Let A and B be two disjoint sets of points in the plane such-that no three points of AU
B are collinear, and let n be the number of points in A.

(IfFIBl> m+1)2n— 4)+1 then the geometric complete bipartite graph K(A, B) contains a path P
withoui crossings such that V (P contains the set A. » ,

(ii) There exists a conﬁguratibn of AUB with | B| = % + —;— —1 such that in K(A, B) every path

containing the set A has at least one crossing.

In order to prove Theorem 1, we need some‘notation and definitions. For a set X of points in the plane,
we denote by conv(X) the convex hull of X. The boundary of conv(X) is a polygon whose segments
and extremes are called the edges and the vertices of conv(X), respectively. For two points x and y in
the plane, we denote by xy the straight line segment joining x to y which may be an edge of a
geometric graph containing both x and y as it vertices. Let A be a set of point in the plane, let y be a
vertex of conv(A) and let x be a point exterior to conv(A). Then we say that x sees y on conv(A) if the

line segment xy intersects conv(A) only at y.

Lemma 2 Let R and S be disjoint sets of boints in the plane with | R > 1| S| such that no three
points of RUS are collinear, and let | be a line in the plane separating the set R and the set S. Let x and
y be two vertices of conv(RUS) with x€ R and y € S such that xy is an edge of con(RUS). Then in K(R,
S) there exists a path P without crossings such that ’

(i) the vertex x is an end of P, and

(ii) V(P) contains S.

Proof We prove the lemma by induction on |RUS|. If | §| =1 then the lemma follows immediately,

and so we may assume | R | > | S| >2. Let z be the vertex of conv(RU.S) with zo € R such that xz; is
an edge of conv(RU S). We consider conv(RU S— {x}). Let Z={zi, 23, ..., za} be the set of new



vertices of conv(RUS —{x}) (possibly Z=9), i.e., zi, 22, .., Zm are interior point of conv(RUS). Set z.+1
=y. Since | R—{x} | >1 and | § | (>2)>1, there exist two vertices of conv(RUS —{x}) z and z+1
such that z;€R and z;+1 €S, i.e., z:zi+1 is an edge of conv(RUS—{x}). It is clear that the vertex x sees
zi+1 on conv(RUS — {x}). Now we consider conv(RUS — {x, z:+1}). Let Z’= {w;, wy, ..., w} be the set
of new vertices of conv(RUS — {x, z;+1})(possibly Z’=9), i.e., wi, w, ..., wi are interior points of
conv(RUS—{x}). Let wi+: be the vertex of conv(RUS—{x}) with wi+, €S such that z;+ W+ is an
edge of conv(RUS — {x}). Set wo=z. Since | R—{x} | >1 and | S—{z;+1} | > 1, by repeating the
above method, there exist two vertices w; and w;j+1 of conv(RUS — {x, z;+1}), such that ijR and'wjﬂ
€S ie., wyw;+ is an edge of conv(RUS—{x, z;+1}), and such that the vertex z;+; sées wj on conv(R
US—{x, zi+1}). By the induction hypothesis, in K(R—{x}, S— {z;+1}) there exists a path P’ without
crossings such that

(i) the vertex w; (ER) is an end of P’, and

(i) V(P’) contains S — {zi+1}.

Obviously P=P’ Uxz;+1Uz+1w; is the desired path. [

Now we proceed to prove part (i) of Theorem 1. We may assume that no two points of AU B have
the same x coordinate. Let ai, as, ... a, be points of § sorted by their x-coordinate and let P; be the
vertical line which passes through the point a;, 1< i < n. These n lines separate the plane into n+1
regions and hence they separate the set B into n+ 1 disjoint subsets. Assume that these lines are
directed upward. By the assumption, at least one subset contains at least 2rn —3 points of B. We may
assume that one of the region which contains at least 2n—3 points of B is bounded by the lines P; and
Pii1, 1< j <n—1. (The leftmost and rightmost unbounded regions can be treated similarly.) Let B; be
the subset of B between P; and P;+; i.e., | B;| >2n—3. Let 10 be the line between.P; and P} ; satisfying
the following conditions: :

(1) Iy passes through a point by of B; and is directed upward,
(ii) Let B; be the subset of B;—{bo} to the left of [, and let B, be the subset of B;—{bo} to the nght of
lo. Then | B, | >2j~2 and | B, | > 2n~—2j—2.

Let A, be the subset of A to the left of J, and let A, be the subset of A to the right of ;. Trivially
| A/l=jand | Al =n—j. Let t; and t, be the two rays emanating from b, such that # is tangent to
conv(A;) at w;, 1< i < 2, and , is above 1. Also let #; and t, be the two rays emanating from by such
that #; is tangent to conv(A,) at w;, 3< i < 4, and 1; is above #,. (Notice that since no three points of A
U B are collinear, each ray contains no point of B;UB,.) Let B/ be the subset of B, above the ray t;
and B; the subset of B, under the ray t;. Also let B be the subset of B, above the ray # and B; the
subset of B, under the ray t;. Since | B, | 2> 2j—2, we have either | Bf | >j—1or | B;| > j—1, say
| Bf | > j—1. Similarly we have either | B | > n—j—1or | B | >n—j—1,say | B} | > n—
j— 1. Consider now K(Bf U {by}, A,). Since | Bf U{bo}l > j= | A, |, applying Lemma 2 and letting
x=by, in K(Bf U{bo}, A;) we can find a path R; without crossings such that
(i) the vertex b, is an end of R;, and
(ii) V(R)) contains A;.
In a similar manner, in K(B;")U {bo}, A,) we can find a path R, without crossings such that
(i) the vertex b, is an end of R,, and



(ii) V (R,) contains A,. , .
Set P=R;UR,. Clearly P is a path in K(A, B) without crossings such that V(P) contains the set A.

In order to show part (ii) of Theorem 1, suppose that n=4k and all points of AU B lie on a cycle
in the following order:

Q

0 0 0 0 20 0 1 1 21 pl 1

ai, az, .., ar+a, b1, by, ..., by, ai, a3, by, b, ..., b,
2 2 12 12 2 k=2 k=2 pk—=2 pk—2 k—2
1, 42, bl,_ bz, veey bk, e e ey A1 5,42 7, b] N bz 3 eeey bk s
k-1 k—1 k—1 pk—1 pk—t k—1

ar ,a sy eees Ak+2, bl ’ b3 s eeny b3k—1,

where a}’s are points in A and b’s are points in B. It is not difficult to show that | A | =n and | B | =

2
1% + 5" —1 and that in K(A, B) every path containing the set A has at least one crossing.

This completes the proof of Theorem 1. ]
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