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Abstract

We extend the smoothing algorithm proposed in [HIY00] for monotone LCP to the one for P* («)-LCP.

The results of this paper are direct extension of those in [HIY00]. We show that the algorithm terminates in

0 (M]Ogﬂ) Newton iterations where 7 is a number which depends on the problem and the initial point
€

€ 6
and « is a constant which depends on the problem.

1 Introduction

We consider the standard linear complementarity problem, LCP (g, M ):
Find  (r,y)sR*

st.  y=Mx+gq (1.1)

xiy; =p(EEN) (1.2)

(x,y)=(0,0) (1.3)

where N=1{1, 2, ..., %}, M is an n X n matrix and ¢ is an % -dimensional vector. We assume that the following

condition holds.
Condition 1.1.
(1) Let M be an n x n matrix of the class of P* (k) for some k=0, i.e., M satisfies

k=0, vE€R", (1+4K) [Z@a[Ms],»f 12(‘)45{[1\45]{20 (1.4)
where 1. (8)={ie N|&[ME]; >0}, (1.5)
I-(§)={ieN|&[Meli <0} (1.6)

Jor some k= 0.
(ii) LCP has a feasible interior point, i .e.,
I(x, ¥)>(0,0) st. y=Mx +q.
Condition 1.1 is milder than Condition 1 in [HIY00]. The relations among the class of P* (k) matrices
and other classes of matrices had been discussed (see [KMNY91]). The algorithm is based on the use of Chen-

Harker-Kanzow-Smale smoothing function

¢ (e, a,b)=a+b—y/(a—0b) +4p* (1.7)
with a positive number # > 0. For # > 0, the following property holds:
¢ (1, a,b)=0=ab=pu* (a,b)>(0,0). (1.8)

It is well-known that the next proposition for the CHKS-function.

Proposition 1.2. (Proposition 1 of [ HIY00]) For every nonnegative number 1 = 0, the following equivalence
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results hold for every a, b, c € IR .

(i)

d(u,a,b)=c="(a—cl2)(b—c/2)=pn?>=0and (a—c/2,b—c/2)=(0,0). (1.9)
(ii)
p(u,a,b)<0 = ab<u?ifa+b=0. (1.10)
Specially, if 1 > 0 then
¢ (1,a,0)<0 = ab<p®ifa+b>0. (1.11)
(iii) ¢ is a concave function, and
a—>b
V%(ﬂ,mb)=**uREtE%TI@Py} —1 |(a—b, —p ), (1.12)
o
1v%6 (. a. )= 2 (1.13)

We define some symbols used throughout this paper. N means the index set {1, 2, ..., #}. IR" and IR,
denote the 7 -dimensional nonnegative orthant and the # -dimensional positive orthant, respectively. For a given
vector x, vecixi } and diag{xi } represent the # -dimensional vector whose i -th element is the 7 -th component
of x and 7 X n -diagonal matrix whose ¢ -th diagonal element is the 7 -th component of x, respectively. e denotes

the vector vec{ 1} whose components equal to one.

2 A smoothing algorithm for P* (x)-LCP

We employ the following system of equations on (¢, x, y) € IR + x IR *" to approximate the solution of the
LCP atapoint (¢, X, y) € IR ++ X IR *":
M= 0upt,
y-Mr-q=0, (2.1)
¢(/‘t’xi’yi)zd¢$i (ieN).

The Newton direction (A, Ax, Ay) € IR'**" to the system (2.1) should satisfy the following equations:
Ap=—1—-0)E (2.2)

M T (AEY (0 (2.3)
D: D,J\Ay) \—dedu—(1-0,)® :

du = vec{fA},
V(xi—y:)*+4p°
lag{ @ ) A

where

D, := dia {1+f¢’
T E

The following results are satisfied.
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Proposition 2.1.
(1) Forevery(Z, X, g) E IR ++ xIR*",
Xi—Yi
0< 1i—m <2 (2.5)

(i) (Lemma 4.1 of [KMNY9I]) The system (2.2) and (2.3) has a unique solution (Mg, Ax, Ay)

whenever Condition 1.1 holds.

Here, we describe our algorithm in detail.
Algorithm.
Step 0: Lete >0 and & := 0. Let y° := M x°+q and choose #° > 0 such that (x°)?>max {0, xy? (i € N)}

and let ¢ == ¢ (¢°, x), y)) (i €N).
Step 1: If #* < € then stop else let p := 0 and (£°, §°, °):= (x*, y*, @*).

step 1.1 If[@” < € then go to step 1.2. Compute the Newton direction (Az? ,Ax? ,Ay”) by solving the

system (2.2) and (2.3) with 6, :== 1 and g4 := 0. Let
(241, gty = (2", g7)+ 07 (Ax?, Ay?), @' =@ (p*, 2271, §**")

5D k
L o’k

bz P+iag ) .Letp :=p+1 and go to step 1.1.

where 67 :=min

stepl.2 Let (Z, x, ) := (1%, £’, §*). Compute the Newton direction (A%, AT, AY) by solving the
system (2.2) and (2.3) with 0. :=1/2 and 04 := 1. Let
(eft ot gty = (ef, 7, ) + (A, Ax, AY).
Letk :=k+1 and go to Stepl.
In Condition 1.1, the 7 x # matrix M is supposed to be P* (x) for some k > 0, but this algorithm can be
applied to P° cases. It should be noted that the value of x (=0) isn’t necessary on ahead in the algorithm.

Since the value #* is always reduced to #*/2 at each iteration &, the number of Newton iterations required is
0

log©-1.

Mog” -1

3 Some basic results

In this section, we collect some basic properties of the CHKS-function ¢ and the Newton directions (2.1)
under Condition 1.1.
Proposition 3.1.  Suppose that Condition 1.1 holds. Let
ABp)={(x,y)eR” ly=Mx+q, ® (1, x,y) <0, [ @ (&, x, y)|< B, £ (0, "]}
for 8>0, 1° > 0. Then for (x,y)s A (B, 1°),

B

—5e < x < (1+407 (8, #)e, (3.1
—%e <y < (11407 B 1")e (3.2)
n( /10)2—&-(;6 +§e>T<yo +%e>
where 7 (B, 1) := —— > I (3.3)
min{x;, y; } 2

for some k> 0.
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Proof: The lower bounds of x and ¥ directly come from (i) of Proposition 1.2 and ¢ (&, xi, ;) = — 8 for
every 1 € N. To show the upper bounds, we use the fact that Condition 1.1 holds. Since y =Mx+gq,
y=M x +q with (i, ¥)> (0, 0) and M is P*, we have

(1+4K) 2 (xi—a?:i>(yf—&f>+,21 (i =) (g, =)= 0

i€l

for some k= 0. Thus the inequality

¢i ¢i © ¢i o ¢i © ¢i ¢i ¢i o ¢i
a+40 2 @ -0 -5+ 6 -850, -5 -G -0 - - -6 -5)
s 2@ -0 -2+ @ -6 -5 e -5 - @56 -5 =0
(3.4)
holds for some x> 0. Here, from ( i) of Proposition 1.2,
(xi —il2)(y; —il2) = p? < (p°)2.
Since —8 < ¢; < 0 and (x:, y:) > (0, 0),
(@i —$il2) (y; —$i/2) < (i +B12) (i +8/2).
Because ¢i =0,
Ti—dil2=2:>0, yi —¢i/2 =y, >0,
and
(X —i2) (yi —$:/2) = xi (y; —$i/2) > 0,
(i —$i/2) (s —$:/2) = ¢ (xi —$i/2) > 0
for every i € N. Applying the above some bounds to the inequality (3.4), we have
0=(1+4) 2 {2+ @ +812) i +B12) — y: (xi — $i/2) — xi (y; — $:/2) )
{0 @+ B12) i +B12) — i (i = bi/2) — 21 (g, — 4112)
= (1) + @ +B2e) (g +B12e)—y (x—D2)—x (y—D/2)
i 3 {(10)+ (1 +B12) s +B12) =y, (20 = i12) = i (y; = $112))
= (1°)+ @ +B2e) (g +82e)—y (x—@12)—x (y—D/2)
i {102+ @ +8/2) (v +812))
iel
< (1+4K)[n (u°)2+ @ +8/2e)" (g +B12e) |~y (x—@/2)—x' (y—D/2)
Therefore, we see that
2= gil2 < (1+ 40— {n (1) + (x +812e)7 (5 +B12e)} < (1+4K)7 (B, 1),
Yi
vi—di2 < (A+4K) L0 (10)2+ & +B812e)" (g +B12e)) < (1+4K)7 (B, 1°). 1
Xi

Proposition 3.2. Ler (2, T, ¥) € R+~ xIR* withy=MZ+q, and let $; := ¢ (&, Ti, ;) (i € N). Define
(x',y'):=(@x—@/2, y—®@/2). Then the following results hold.
(1) () of Proposition 4 of [HIY00])
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V@ =G A = x4yl = 20 (e N)

(ii) ((i) of Proposition 4 of [HIY00]) The solution of (2.3) is the unique solution of the system

) G) 5

where
X' :=diag{x'}, Y :=diagly’'}, h .= —2(1—0,.)7%e— 1_20"5 X' +Y) .

(iii) Suppose that Condition 1.1 holds. If (&, X, §) € IR ++ x IR *" lies in the set A (8, 1°) for some B > 0 and

#° >0 then
= Lyl < 2(14 0 36
0 < SA+207 (8. 2" < xl,yl < 2(1+26)y (B, 1°) (3.6)

where

7 (B, 1) :=max{y (8, £°), #°}. (3.7)

Proof: (iii): From Proposition 3.1,
—rBe’) < =82 <y < A+ (B 1),
[—(1+4K>7<5,w> < T < B2 < 7B a".
Thus, we have
—2(1+20)7y (B, 1°) < ¥ =T < 2142107 (B, 1°).
Therefore, we obtain the lower bound of ¥; as follows.
v =7 =82 =5 \@ ~7)+/ G T )

Yi—ZXi
= +
2

== (1+20)7 (B, 1) +V (A +26)%y (B, 1)+ 72

2

_ 3
(14207 B, 1)+ A+ 2602y (B, 1)+ 77

72

7
= 14207 B, 1)+ (1+ 2007 B, £t 7

> - )
(1+v2)(1+26)7 (B, 1°)
The first inequality is depend on the fact that the function g (¢ ):= a++va?+b with some b > 0 is strictly

increasing with respect to @ € IR . Next, the upper bound of ¥; is as follows.

=T -d2 < (1+407 B e)+E < 204207 8, 10). (3.8)
By a similar discussion, both the lower and the upper bound of x; are obtained. |

By the Lemma 3.4 and 4.1 of [KMNY91] for the type of the system (3.5), the following results are
obtained.
Proposition 3.3.  Suppose that M is an n x n P* (x)-matrix for some k = 0. For every (x', y’)>(0, 0) and

heR", the system (3.5) has the unique solution (Ax, Ay ) which satisfies the following inequalities:
_ VLRI T 1 AL
KXY HRI < ax”ag < Loy HRIP 39)

Iy Azl 1Y) 2 X Ayl < 1+ 20l (XY 2RI
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for som k= 0. |
Corollary 3.4. Suppose that Condition 1.1 holds and let (£, X, §) € IR ++ X IR*" be in the set A (B, 1°) for
some B> 0 and 1° > 0. Then

) ) 9(1+2)°7 (B, £°)? .
| Azl +] Agl? = 2 ’“)ﬁf(“) IR12.

Proof: By Proposition 1.2 and the definition of (x', ¥"), we have XY’ =7l with # > 0. Thus the

second inequality of (3.9) can be rewritten as follows.
1Y axl*+1X ayl* < (1+22) R
By (iii) of Proposition 3.2,

, 3(1+2k)7 (B, 1° N 3(1+2k)7 (B, 1°
oy s BAEZOTEAD gy < SUL2OTE L),
Thus we have
2 ~ 0
laxl < 1(v) 1Y az) < SATZOTB LD g (3.10)
, , 3(1+26)7 (B, 1° ,
lagl < X)X agl < 3¢ ";Z(ﬁ 20 1x gl (3.11)
Then,
| Azl +1 agP<I (Y IV az P+ 1) 21X Agl?
9(1+25)27 (B, 1) v n 2l v Al
< ")/73(‘“’“ (Y azlP+1X Ayl
Therefore, the desired result is obtained. |

The last proposition gives a second order approximation of the behavior of @ along the Newton direction
(Ap, Ax, Ay).
Proposition 3.5.  (Proposition 6 of [HIY00]) Let (£, %, §) € R such that ® (&, T, §) = @ < 0 and let
(Ap, Ax, Ay) be the solution of the system (2.1).
(1) Foreveryie N and6 [0, 1],
0=(1-0(1-04)}o,
> ¢ (E+0Ap, x+0Ax, g+0Ay)
>{(1-0(1-05)} 4, f%{(lffm)zﬁerAforAyf}
(ii)
| (Z+60Ap, T+0Ax, G+60 Ay
é{170(176¢)H5”+%{(17m)2\/ﬁﬁ2+|\Ax\IZ+I\AyH2}. |

4 Complexity analysis of the algorithm for P* (x)-LCP

At first, we show the finite termination of Step 1.1 to derive a complexity bound of the algorithm.
Throughout the discussions in this section, we assume that Condition 1.1 holds.
Lemma 4.1. (Lemma 1 of [HIY00]) At each iteration k, the following inequality holds for any p in Step 1.1.

1 I
12’ F+ag" ) 2

@] < max{1 @] (4.1)
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Lemma 4.2. (c.f. Lemma 2 of [HIY00])
(1) Let(&, &, §) be any point generated in the algorithm. Then
D (g, x,5)<0.
(ii) Let (2", *, §*) be any point generated at the iteration k . Then
l® (z*, 2+, g") | < B
and hence
(ak, x*, g*)ye A (B*, 1°)

where

20(1+26)°7 (e, #°)*n (4.2)

Bt = PL

Proof: ( i ): By the construction of the algorithm, the value of ¢: (i € N) is always nonpositive.

(ii):In Step 1.2, we set 0. := 1/2, 4 := 1 and § := 1. Thus, by (ii) of Proposition 3.5, we have
kY2
19 G, g 0l < e 2 aal oy, 43)

By Corollary 3.4, we see that

9(14+2k)%7 (e, °)? . .
( (/)11334( ©°) (—(uk)zﬁ)z

9(1+2K)°7 (e, °)?n

Since the definition of 7 and € < % < 1£°, we obtain the bound

Hd)(#}wrlyxlwrl k+1)” # {f(f ) +9(1+2K)377(6,#0)27L}

A

lax |+l agl* <

< +#——(1+2K) 7 (e, 1°)?n

35 0y2
- 20 (14 2k) z(e,u ) n 1

7

Theorem 4.3. (c.f Theorem 1 of [HIY00])

(1) At each iteration k, Stepl.1 terminates after P* Newton iterations where

Eo,,0N\4| dh* k
x| 72042077 60" 1|0t
(et)? €

(ii) The total number of Newton iterations in the algorithm is bounded by

o 022978 8] o)

Pt =

€ €’
where

7= 20(1+2K)7 (e, £°)%n
€

Proof: (1):In Step 1.1, we set 0. :=1 and 04 := 0. By (ii) of Lemma 4.2, Corollary 3.4 and (iii) of
Proposition 3.2, we have
lax? |*+lay? [* <

A

9(1+2k)°7 (B*, 1°)* e |?
(#*)!

9(1+2K)%7 (B*,
L S0 6

b’ |
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35 k 0y2 ~ .
< 9AF20°T BL 1" 116 (1 4 o)z (8%, w0y |
(") 4
36 (1+26)°7 (B*, p°)* (ﬁﬁuz
- (u*)!
Since [’ |<||®@"|=]®* || and the above inequality imply that
Hé’pl\,uk o ph e (ph)!
d(ax P +1ag? )~ 4-36 (1+26)°7 (BE, 1) D" |
_ (u*)?
144 (1+26)°7 (8%, 1) @" |
(u*)?
144 (1+26)57 (8%, ") D" |
Thus, ||@” | will be reduced at least by 1 —8* where

k)5
6% :=min r(ﬂ ) — ,,l
144 (1+20)°7 (B*, 1*)*|@" | 2
at each iteration p in Step 1.1. Now we can obtain a lower bound of p as a suffcient condition of p to satisfy
(1-sh)l@tf<e, ie.

(4.4)

s

1, €
b g{ak muw”

Therefore, the assertion follows from Lemma 4.1.
(ii):Since B* <B,7 (B*, 1) <7 (B, 1°) and[|@" |< B* by (ii) of Lemma 4.2, we have that

Pt < [loggy

o (7204207 (B, 1)
(nh)?

for every k. Then, by a similar discussion as in the proof of Theorem 1 in [HIY00], the Newton iteration is
bounded by

e D

€

5 Concluding remarks

The complexity bound of the smoothing algorithm for P* (K)-LCP has been presented. The results in this
paper extend the complexity analysis proposed for monotone LCP in [HIY00] to the one for P~ (x)-LCP.
Consequently, we have shown that the algorithm terminates in

K7n W)
0 < e log p
Newton iterations where 7 is a number which depends on the problem and the initial point, and « is a positive

constant which depends on the problem.
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