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In an image, the regions of which characteristics are almost uniform or homogeneous correspond to the 
projections of objects or parts of objects and the background in the real scene. Finding the boundaries between 
the regions in the image is a problem of fundamental importance in computer vision such as object recognition, 
because it relies on the region and boundary data representing the shapes and contours of objects in the image 
and consequently its accuracy depends on the quality of the estimates of such data. 

In this paper, we distinguish a boundary and an edge in an image, though both represent a curve representing 
an abrupt change in the image features. That is, a boundary is defined as a border between different regions in 
the image plane, whereas an edge is defined as an abrupt change in some low-level image features such as 
brightness or color. Since a boundary can be represented as an edge between regions, we call it a boundary edge 
in this case. The standard edge detector such as Canny’s edge detector [1] considers a small patch centered on 
an image pixel, computes local maximums of oriented brightness gradients, and outputs their magnitudes and 
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locations as edges. By its locality, besides true boundary edges, it produces many edges caused by noise and 
subtle changes in brightness even in almost uniform regions and it inevitably produces many high-contrast 
edges in textured regions. Therefore, the process which detects edges with high boundary likelihood is needed 
for their subsequent use. On the other hand, as a result of the standard region segmentation techniques such as 
the split-and-merge and region-growing algorithms, boundaries can be produced. However, the produced 
boundaries are ragged and often erroneous due to their limited discrimination power. Therefore, the data on 
edges with high boundary likelihood is needed in order to detect more accurate boundaries. 

In this paper, we propose a method for detecting edges with high boundary likelihood of a natural image 
from the output of a modified Canny edge detector based on a boundary-likelihood index. Since Canny’s edge 
detector whose algorithm is easy to implement and performance is superior has been most popular and widely 
used [2], developing such a method for enhancing the quality of its output by eliminating non-boundary edges is 
important and much desired. 

Various approaches to producing high-quality edges or detecting boundaries or contours have been reported 
in the extensive literatures; these approaches can be roughly classified into several groups as follows. We briefly 
review major ones. 

The first group is based on various techniques to produce high-quality edges. It includes the techniques for 
the use of the multi-scale [3 - 5] and anisotropic diffusion [6 - 8]; the relaxation labeling [9 - 11]; a surround 
suppression technique for suppressing texture edges [12, 13]; and a non-boundary local energy model and local 
thresholding technique [14]. 

The second group is based on various techniques to detect boundary edges using the combination of the 
local features of edge pixels and edge elements. As the local features, length, gradient magnitude, contrast, 
continuity, proximity, curvature, co-circularity, etc are used. In these techniques, as the final procedure for 
selecting boundary edges or contours, thresholding, optimization, relaxation procedure, etc are used. It includes 
the hysteresis thresholding method based on gradient magnitudes and continuity [1]; the generalization of the 
hysteresis thresholding based on confidence measures [15]; the edge evaluation in a length and average gradient 
magnitude space based on statistics [16, 17]; the edge evaluation based on distances between textures [18]; and 
the edge element grouping techniques based on proximity [19], curvature and globally salient structures [20], 
co-circularity and combinatorial optimization [21], smoothness and relaxation labeling [22], co-circularity and 
surround inhibition [23], and continuity and adaptive pseudo dilation [24]. 

The third group is based on various techniques to detect boundaries using the learning processes of prior 
knowledge on boundaries. It includes the techniques for the learning processes of human-marked boundaries 
based on statistical inference [25, 26], conditional random field [27, 28], boosted edge learning [29], and 
artificial neural networks [30, 31]. It also includes the techniques for the learning processes of object specific 
low-, mid-, high-level information [32]. 

The fourth group is based on various approaches using region segmentation. It includes the techniques for 
integration of region-growing and edge detection [33], fusion of color and edge information [34], graph 
partitioning [35], and pairwise-similarity and variational cost function [36]. 

Our approach falls within the second group and it is classified into the method considering only the features 
of each edge regardless of the reciprocal relation of edges. The recent related literatures show that the boundary 



－ 17－

Fac. Inform. & Com., Bunkyo Univ., Information and Communication Studies, Vol. 44, Jan. 2011

- 3 - 

detectors based on local features are not complete and universal. Generally, the output containing the more true 
boundaries is apt to contain the more non-boundaries and the output containing the fewer non-boundaries is apt 
to contain the fewer true boundaries. The major problems with these approaches are as follows. 
(1) The first is what features to use to detect edges with high boundary likelihood. Since boundaries are borders 

between regions with different image characteristics, use of only local edge features which are derived from 
a small neighborhood of each pixel such as gradient magnitudes, co-circularity of edge elements, etc cannot 
provide reliable indicators of boundary likelihood. Therefore, in order to obtain better results, the 
approaches considering image features in a much larger neighborhood such as the reduction effects of 
saliency of edges surrounded by textures [12, 13], distances between textures [18], and texture gradients 
[26] are required. 

(2) The second is how to tune parameters which are inevitably needed to adjust the processing condition. In 
most of such systems, they must be tuned to obtain desirable results for each image. In the third group, such 
parameter tuning operations are performed by the learning processes, which is troublesome and computa-
tionally expensive, based on human-marked boundaries or object specific information. 

(3) The third is how to select the final output. Most of the thresholding methods require the user to choose 
threshold values, especially two values in the hysteresis thresholding [1, 15], manually for each image and 
thus they have practical difficulties of how to choose these values. The processing such as the relaxation 
labeling, global optimization, etc is computationally expensive. 

(4) The fourth is that the algorithms of most of the modern approaches are very complex, difficult to implement, 
and computationally demanding. 

For the second, third, and fourth problems, we need to devise methods which are as simple to implement, less 
troublesome to tune, and computationally cheap as possible. 

In this paper, we propose a method for detecting boundary edges by using the modified Canny edge detector 
and a local image-feature integration method (LIFIM). Our goal is to devise methods which can resolve the 
foregoing problems and to present a boundary edge detector which can produce output containing as many 
boundary edges and a small number of non-boundary edges as possible. Our method consists of three stages. 
First, by the modified Canny’s edge detector, edge candidate pixels are selected. Next, by the processes of 
following edges, computing the edge saliency indices (ESIs) of the detected raw edges, and automatically 
thresholding them, salient edges are selected. Finally, by the processes of computing the boundary likelihood 
indices (BLIs) of the salient edges and automatically thresholding them using a depth-curvature based valley 
seeking method (DCVSM), boundary edges are selected. The edge saliency index (ESI) is constructed by a 
linear combination of the three terms based on a mean-fitting normalization (MFN) method: the length, mean 
gradient magnitude, and smoothness measure of a raw edge. The last term is computed by an entropy-based 
smoothness measure (EBSM). The boundary likelihood index (BLI) is represented by the product of ESI and 
the measure of diversity of a salient edge, which is computed by the gray level distributions of its relatively 
large neighboring area. Our method has several parameters to be tuned. It is designed so that the parameter 
values once tuned for several images can be used in common for other images by adjusting the differences 
between major characteristics of each image automatically. 

The contributions of this paper are LIFIM integrating its components of ESI based on the MFN method, 
EBSM, and BLI; and DCVSM. The major features of our system are as follows: the algorithm is simple and 
easy to implement; the computational complexity is not so high; the parameter values once tuned can be used in 
common for other images; the good thresholds for selecting boundary edges are automatically computed; and 
the performance is robust and relatively good estimates of boundary edges in natural images can be obtained. 
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Fig. 1. The flow of the proposed boundary edge detection method. 

We implemented our method and performed experiments to investigate and evaluate its performance on the 
three standard image data sets: the RuG [37], Berkeley [38], and South Florida [39] data sets. We will show as 
many resultant boundary edge maps as possible with the quantitative evaluations using the human-marked 
boundaries.

The rest of the paper is organized as follows. In Section 2, we present our boundary edge detection method. 
In Section 3, the results of the experiments are presented. In Section 4, we summarize the experimental results, 
compare our results with those of the previous papers, and discuss the future work. In Section 5, the conclusions 
are described. 

The overview of our method is shown in Fig. 1. Our method consists of the following three stages. The first 
stage consists of the following three processes. First, an image is smoothed by using a gaussian filter and then 
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the gradient at each pixel is computed. Next, at the noise estimation process, a threshold above which a gradient 
magnitude is considered “significant” is determined. Finally, the nonmaximum suppression is performed and 
edge candidate pixels are selected. The second stage consists of the following three processes. First, edges are 
followed by searching eight-connected pixels to each other in the edge candidate pixels and the raw edge map is 
produced. Next, ESI of each raw edge is computed. Finally, the histogram of ESI values is formed and the 
salient edge map is produced by a threshold which is automatically determined by analyzing the concavity of 
the histogram. If the salient edge map is satisfactory, we can stop further processing and accept it as the 
boundary edge map. The third stage consists of the following two processes. First, BLI of each salient edge is 
computed. Next, the histogram of BLI values is formed and the final boundary edge map is produced by a 
threshold which is automatically computed by DCVSM. 

Our LIFIM is based on ESI and BLI. The edge saliency index (ESI) is represented by the edge information, 
i.e. a linear combination of the three terms: the length, mean gradient magnitude, and EBSM of a raw edge. The 
boundary likelihood index (BLI) is represented by the information on a salient edge and its neighboring area, i.e. 
the product of ESI and the measure of diversity which is computed by the gray level distributions of the two 
subsets of the observation window. Our strategy to detect boundary edges is first to select edges containing as 
more boundary edges and fewer non-boundary edges as possible by ESI and next to select edges with high 
boundary likelihood as accurately as possible by BLI. In the latter, edges of which the image characteristics on 
both sides are more different are selected from the output of the former. This strategy allows us to reduce the 
complexity of computation of BLI and to facilitate computation of thresholds in DCVSM. 

Our method is different from Canny’s edge detector in that pixels with insignificant gradient magnitudes 
identified by the noise estimation process are eliminated from the edge candidate pixels and any thresholds are 
not used in the edge following process. In this meaning, Canny’s edge detector is modified and used in our 
method.

We show the major output of these processes for the bear image of the RuG data set [37]. The original 
image and human-marked boundary edge map are shown in Fig. 2 (a) and (b), respectively. 

In order to diminish the effects of noise, the smoothing operation is applied to the gray levels of the image 
of interest before computing the gradients. Concretely, the input image is smoothed by convolving it with a 
two-dimensional linear gaussian filter of which standard deviation and size are g and Wg, respectively. The 
scale of smoothing ( g ) must be selected suitably. Smoothing with large scale filters can hide or blur fine 
structures and subtle features; consequently this results in increase in missing edges. On the other hand, 
smoothing with small scale filters is sensitive to edge signals but also prone to respond to noise; consequently 
this results in increase in spurious edges due to noise, etc. Since our method uses the noise estimation process, 
we adopted a strategy of using a relatively small value of g  in order not to eliminate significant changes of 
image features. We empirically found that g  = 1.0 and Wg = 5 are best for the images which we tested. The 
results shown in this paper are those which were obtained by using these values. 

Using the gray levels of the smoothed image, the gradient vector at each pixel is computed following 
Fleck’s method [40] which can reduce the bias in computation of gradients. Her method uses a 3 3 pixel area 
centered on a pixel of interest and a mask [-1, 0, 1] to compute first differences in the four directions: horizontal, 
vertical, and two diagonal directions. The X and Y components of the gradient vector on the x and y axes, 
respectively are computed considering the projection of the diagonal differences on to the x and y axes. The 
gradient magnitude is computed as the magnitude of the gradient vector (X, Y) and the gradient direction is 
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               (a)                           (b)                           (c) 

              (d)                            (e)                           (f) 

Fig. 2. The input and major output of each process for the bear image: (a) original image, (b) human-marked 
boundary edge map, (c)gradient magnitude, (d) raw edge map, (e) salient edge map, and (f) final boundary edge 
map (F = 0.788). 

computed by using the arctangent of the ratio of X and Y. The image of the gradient magnitudes of the bear 
image is shown in Fig. 2 (c); it is expressed by inversely transforming their values into the gray levels. 

The gradient magnitudes computed in such a way contain small values due to noise. At the noise estimation 
process, the histogram of the gradient magnitudes is formed and a threshold above which a gradient magnitude 
is considered “significant” is determined. The threshold   is computed by the modified Voorhees method [41] 
by 

)1(,ln2 nn P

where Pn , which is given as input, is the probability that pixels with gradient magnitudes due to noise are 
contained in the edge candidate pixels, if the threshold is used; and n is the mode of the Rayleigh distribution 
that the histogram of gradient magnitudes due to noise takes on. We assumed that n is equal to the gradient 
magnitude at which the histogram exhibits the first maximum. The pixels with a gradient magnitude equal to or 
above  are treated as the objects for the search of local maximums in the nonmaximum suppression process. In 
other word, the pixels with a gradient magnitude below  are eliminated from the candidates of edge pixels. As 
a result, the edge following process becomes stable. Note that the threshold  is determined considering the 
characteristics of each image. The threshold  corresponds to the lower threshold in the hysteresis thresholding 
[1]. By this processing, a suitable threshold can be determined according to the image characteristics and we are 
relieved from choosing the threshold manually. 
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Fig. 3. Histograms for the bear image: (a) gradient magnitudes, (b) ESI values of the raw edges with BS1 = 0.06, 
and (c) BLI values of the salient edges with BS2 = 0.015. The ordinates: for (a), the number of pixels in 10,000; 
for (b) and (c), the number of edges in 100 and 10, respectively. 

The histogram of the gradient magnitudes with a bin size 1.0 for the bear image is shown in Fig. 3 (a). We 
adopted a strategy of using relatively large values of Pn, i.e. relatively small values of  in order not to eliminate 
significant structures of image features. We empirically found that Pn = 0.1 is best for the images which we 
tested. The results shown in this paper are those which were obtained by using this value. For the bear image, 
since n = 3, the threshold 6.4 was obtained. 

In the nonmaximum suppression process, the gradient magnitude at a pixel of interest is compared with 
those at the two virtual points located at the opposite sides in the gradient direction. If the gradient magnitude at 
the pixel of interest is lager than those at the two virtual points, then the pixel is selected as an edge candidate 
pixel and stored into the edge candidate pixel map. In the conventional scheme, the two virtual points are 
defined as the intersections of the gradient direction with the sides of the 3 3 pixel area and their gradient 
magnitudes are interpolated using the two adjacent pixels on the side. We present a new interpolation scheme 
where the distance between the pixel of interest and the virtual points is a given constant value R. The locations 
of the virtual points can be computed using the unit vector in the gradient direction and their gradient magnitude 
can be computed by the bilinear interpolation using those of its four nearest neighboring pixels. In this scheme, 
any value of R can be used, if necessary. Compared to the conventional scheme, our scheme is easy to 
implement, because it is isotropic for gradient directions. In such a sense, we call this scheme the isotropic 
interpolation scheme. We empirically found that R = 1 is best for the images which we tested. The results shown  
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Fig. 4. Search for a next edge pixel. Examples of the directions of edge segments and the corresponding five 
neighboring pixels for searching a next edge pixel: (a) horizontal direction and (b) diagonal direction. 

in this paper are those which were obtained by using this value. 

In Fig. 1 in [28], Ren et al. showed the characteristics of the empirical distribution of the tangent angle 
changes along human marked-boundaries in natural images: the distribution is sharply peaked around zero, i.e. 
in most cases boundaries are smooth; and the distribution has a heavy tail, i.e. occasionally boundaries do make 
sudden turns, though most of tangent changes are between -90 and 90 degrees. Our edge following method for 
detecting edges is based on such empirical data. 

In the beginning of the edge following processing, the image is divided into blocks for selecting the starting 
point. As the starting point for following an edge, the pixel with the maximum gradient magnitude at the time in 
the block is selected. If the processing of an edge is finished, the starting point is selected from the remaining 
pixels in the block. An edge starting at a block can be followed into another block, if necessary. The processing 
is performed for each block in order. This strategy has the following advantages: since significant edges with 
larger gradient values have priority in the edge following processing, the processing becomes stable; it allows us 
to produce a unique set of edges and to reproduce the same result. 

An edge is followed and detected from the edge candidate pixels as follows. A pixel constituting the edge is 
followed by searching five neighboring pixels that exist at the angles between -90 and 90 degrees from the 
current edge direction formed by the pair of the last and the second last pixels of the edge as illustrated in Fig. 4. 
If a pixel is determined to belong to the edge, it is given the flag to avoid the overlapping of edges. Each of the 
five neighboring pixels is given one of the five pattern labels of 0, 1, 2, 3, and 4 corresponding to an angle from 
the foregoing edge direction as shown in Fig. 4. This label is used to express the changes of positions of 
consecutive pixels of the edge and to compute its smoothness measure. The edge data is stored into the edge 
buffer using the chain cord of each pixel. 

In the case where multiple edges intersect at one pixel, since the decision on which one is a true boundary 
edge should be independent on each edge, we adopt a strategy that the edge processing is stopped and each edge 
is followed separately. Thus, the continuation condition of the edge following processing is that only one 
candidate pixel is found except for the following case. If two candidate pixels found are four-connected to each 
other, the pixel that is four-connected to the pixel of interest is chosen as the next edge pixel. A threshold Ll for 
the lower limit of edge length is used to eliminate edges whose length is too short to compute the smoothness 
measure. In the experiments, Ll = 5 was used. 

Since the pixels with small gradient magnitudes due to noise are eliminated from the search object, the 
processing is stable. The raw edge map detected for the bear image is shown in Fig. 2 (d). The number of the 
raw edges is 2,338. 
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We define the edge saliency as a measure to detect high-quality edges containing boundaries. Considering 
the results of the previous papers, we decided the image features to represent the edge saliency based on the 
facts obtained from observing natural images by visual perception. Generally, in most of natural images, 
contours and boundaries representing major objects in the image are long and their gradient magnitudes are 
relatively large. Also, edges in textured regions are wiggly and not smooth. For example, we can see these in the 
bear image shown in Fig. 2 (c) and (d). In addition, for human marked-boundaries, Ren et al. [28] showed that 
in most cases, boundaries are smooth and occasionally do make sudden turns, though most of tangent changes 
are between -90 and 90 degrees. Considering these, we selected the length, mean gradient magnitude, and 
smoothness of an edge as the edge saliency measure. 

For each raw edge i, the length Li and the mean gradient magnitude Gi are computed by 
1
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where dk is the length of an edge segment k formed by two adjacent pixels, which is 1.0 for the horizontal and 
vertical edge segments and 2 for the diagonal one; gj is the gradient magnitude at a pixel j; and m is the total 
number of pixels of the edge. 

For the measure to represent the smoothness or regularity of shapes or edges, the techniques using the 
following values have been reported: the curvature and curvature variation of an edge by Sha’ashua [20], the 
chord length of an edge curve by Vasselle [42], and the local angel distribution of contour segments by Chen 
[43]. 

We define the smoothness of an edge as a measure to represent the frequency of the directional changes 
along the edge curve. Since the position of a pixel is discrete and the constituents of an edge are eight-connected 
pixels, it should be defined considering the following things. The smoothest extreme is the case where the edge 
curve is a horizontal or vertical straight line. The non-smoothest extreme is the case where the edge curve is 
completely random as in the Brownian motion curve. All positional changes in edge pixels correspond to the 
smoothness levels between these extremes. The smoothness level of an arc or oblique line should be high, 
because it is composed of horizontal or vertical short segments which are stepwise connected to each other. 

On the basis of the foregoing consideration, we call a pair of two consecutive edge pixels an edge segment 
and define the smoothness of an edge by using the entropy of the probability distribution computed from the 
combinations of patterns of consecutive edge segments as follows. In the edge following process, each edge 
pixel, which constitutes the current edge segment, is assigned one of the five pattern labels which is given 
corresponding to an angle from the direction of the last edge segment as shown in Fig. 4. The directional 
changes between consecutive edge segments can be represented by the combinations of these five pattern labels. 
The total number of the pattern combinations M is 25, 125, and 625 corresponding to the number of the 
combination 2, 3, and 4, respectively. If we make such pattern combinations along an edge in succession, a 
sequence to represent the smoothness of the edge is produced. By examining the frequency of each pattern 
combination in this sequence and computing the probability, we can compute the entropy that represents the 
degree of the randomness of the sequence and evaluate the smoothness of the edge using it as follows. 

 The entropy of the probability distribution of the pattern combinations for an edge i is defined as 
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Fig. 5. An example of edges: (a) the positions of edge pixels and their pattern labels, and (b) the sequence of 
two-pattern combinations. 

1

0
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where pj is the probability of a pattern combination j which is computed by dividing its frequency by the total 
number of the counted pattern combinations and n is the total number of kinds of the pattern combinations with 
a nonzero frequency that occurred in the sequence. The maximum entropy that represents the complete 
randomness is defined as 

)5(.logmax Mh

The relative value Hi of the entropy to the maximum value is given by 

)6(.
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i

The value Hi can represent the degree of the randomness of the sequence and thus that of the edge curve. In the 
case where it is completely random, Hi = 1; in the case where it is completely smooth, Hi = 0. 

We define the entropy-based smoothness measure (EBSM) of the edge as 

)7(.1 ii HS

In the case where the edge curve is completely smooth, Si = 1; in the case where it is completely random, Si =0. 
Let’s take an example of an edge shown in Fig. 5. In (a), the positions of the edge pixels are depicted. The 

first shaded pixel is the starting pixel and the starting direction of the edge is determined by the second shaded 
pixel. Each of the subsequent pixels is given one of the five pattern labels of 0, 1, 2, 3, and 4 in the foregoing 
way. From the top of the edge, we make the combinations of two consecutive pattern labels to constitute the 
sequence. We call this the two-pattern combination. In (b), such a sequence is shown. Each two-pattern 
combination represents the directional changes between two consecutive edge segments. Therefore, the 
sequence of the two-pattern combinations can represent the degree of the smoothness of the edge. For example, 
at the part of the horizontal straight line, the sequence is 22, 22, and 22. At the part of the shape such as an arc, 
the sequence is 11, 11, and 11. At the part of the oblique straight line, the sequence is 13, 31, 13, and 31. The 
part of 20, 02, 22, 24, and 41 represents an almost random change. Note that the two-pattern combinations such 
as 20 and 02 represent the different directional changes in edge segments, respectively and thus must be treated 
as different pattern combinations. For the edge and the sequence of the two-pattern combination shown in Fig. 5, 
Si = 0.399. 
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Table 1: Statistics of the edge saliency measures of the raw edges of the bear image. 

The next problem is how to represent the edge saliency index of an edge by combining these measures. The 
length, mean gradient magnitude, and EBSM of the raw edges are produced by very different methods; 
consequently the ranges and distributions of their values are very different. We can see these in Table 1 for the 
bear image. According to the analysis of many natural images, the values of the length and mean gradient 
magnitude of the raw edges have the following characteristics in common. 
(1) Most of their values are relatively small and there are only a few large values. Consequently, the mean lies 

in the much lower portion of the distribution range and most of their values distribute in the neighborhood 
of the mean. 

(2) The maximum values of their values are mostly outliers. The maximum value of each image is very different 
from each other, especially in the length measure. 

On the other hand, for EBSM, the differences between images are not so large. 
Although the normalization method with their maximum values is conventionally used to adjust the values 

with the different ranges and distributions, it does not work well due to the foregoing characteristics of these 
measures. Therefore, we devised a new normalization method based on the mean of the measure values called 
the mean-fitting normalization (MFN) method. We tested several ideas such as a linear combination of the 
measures and a product of the measures with exponents. We empirically found the following linear combination 
is best. 

The edge saliency index (ESI) of each raw edge is constructed by a linear combination of the length, mean 
gradient magnitude, and EBSM considering the differences of the ranges and distributions of their values. The 
values of the length Li and mean gradient magnitude Gi of an edge i are adjusted by the MFN method as 
follows:
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where Lm and Gm are the means of the values of Li and Gi of all the raw edges, respectively; and Km is the 
normalization factor to adjust the normalization degree of the values based on the mean. Here, the same value of 
Km is used in Eqs. (8) and (9) to reduce the number of parameters to be tuned. The edge saliency index (ESI) of 
a raw edge i is defined as 

)10(,**
isigii SWGWLE

where Wg and Ws are the parameters to adjust the contribution of each term. 
As an example to explain the meaning of the MFN method, Fig. 6 illustrates the relationships of Li and *

iL in
the MFN and in the conventional normalization method. A range R in the neighborhood of the mean  
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Fig. 6. The relationships of Li and *
iL in the MFN method and in the conventional normalization method; Lmax is 

the maximum of Li.

corresponds to the range V of the *
iL  values. In contrast, in the conventional normalization method, *

iL is the 
values normalized by Lmax and R corresponds to the range Vc of the *

iL values. The range V is larger than Vc, if 
Km is larger than Lm/Lmax.

The MFN method works as follows. 
(1) It adjusts the values of Li and Gi so that they become appropriate magnitudes to add. 
(2) By using appropriate values of Km, it allows us to assign a suitable value to Li and Gi in the neighborhood 

of the mean by which it is easy to distinguish one from another. 
(3) By assigning the same value Km to Li and Gi corresponding to the mean of each image, most of the values 

of *
iL  and *

iG  become similar magnitudes for any images, because most of the values of Li and Gi

distribute in the neighborhood of the mean. This leads to the effect that the differences between these 
characteristics of each image are automatically adjusted. Since the differences of EBSMs between images are 
also not so large, it becomes feasible to use the same parameter values of Wg and Ws in common for any 
image. Consequently, since most of the Ei values also become similar magnitudes for any image, it becomes 
feasible to use the same values of the parameters in common in the subsequent processes to select boundary 
edges.

In contrast, as the normalization factor, the conventional normalization method uses the maximum value of 
each distribution which has the foregoing characteristics. Consequently, the normalized values become mostly 
small ones which are difficult to distinguish one from another and the locations of the ranges containing most of 
the values are considerably different from each other. Therefore, different parameter values need to be used for 
each image to obtain good results. 

The proposed ESI can produce suitable values according to the values of the constituent terms. Its advantage 
is that it can provide a flexible expression of edge saliency for us. For example, an edge with a relatively small 
gradient magnitude but a long and smooth configuration, which can be a boundary of an object, can have a 
relatively large value of ESI. Another advantage of the proposed ESI is as follows. The values of Wg, Ws and Km

need to be tuned trial and error according to the subjective criteria and the practical requirements of the user, 
because recognition of whether an edge is a boundary or not depends on them in some degree. However, the 
parameter values once tuned by a person can be used for almost all natural images as the default values for the 
person, because ESI is constructed so that the differences of the image characteristics to be measured between 
each image are automatically adjusted in the foregoing way. 
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Since the values of ESI of the raw edges are real numbers, its histogram is formed by using bins of a size 
BS1. Generally, it consists of two populations: the first population of which elements are largely non-boundary 
edges with low ESI values and the second population of which elements are the mixture of non-boundary edges 
and boundary edges with high ESI values. The shape is almost unimodal as shown in Fig. 3 (b). That is, the 
peak of the first population is very high and the peak of the second population is either very low or it is 
submerged within the first population. In the former case, a shallow valley between both the populations can 
exist. In the latter case, a shoulder representing the discontinuity point of the histogram can exist. Therefore, we 
can determine a good threshold at the bottom of the valley or at the root of the shoulder by using a suitable BS1.

We can determine such a threshold by analyzing the concavity structure of the histogram [44] as follows. A 
straight line h  is drawn from the top of the histogram bar of the first peak to the top of the histogram bar of 
the last filled bin. Let h(i) be the height of the histogram bar and )(ih  be the value of h  at a bin number i,
respectively. Compute the vertical distance between the top of the histogram bar h(i) and the straight line h ,
that is, )(ih - h(i) as shown in Fig. 3 (b). We can determine the position of a good threshold by the point i at 
which this vertical distance becomes maximum, because this point is the vertically deepest concavity point. This 
is empirically justified by the following consideration. As i increases from the position of the first peak, h(i)
drops faster than )(ih , especially at the bottom of the valley or at the root of the shoulder; consequently )(ih
- h(i) will become maximum at these points. Actually, the heights of histogram bars fluctuate locally and there 
may be some spurious concavities as shown in [44]. However, the fluctuations and the corresponding spurious 
concavities decrease by using a relatively large bin size. Therefore, we can determine a good threshold by using 
a suitable BS1.

We empirically found that BS1 = 0.06 is best for the images which we tested. The results shown in this paper 
are those which were obtained by using this value. For the bear image, the threshold 1.08 is obtained (see Fig. 3 
(b)) using the parameter values described in Section 3. By using this threshold, the salient edge map shown in 
Fig. 2 (e) is produced. The number of the salient edges is 261. 

Since Canny’s edge detector is based on only gray levels in a small 3 3 pixel area, ESI which is composed 
of the information on only edges is not sufficient to distinguish boundary edges from non-boundary edges 
mainly due to texture. Therefore, the salient edges produced at the second stage contain not only boundary 
edges but also many non-boundary edges. The problem is now to compose an index to decide whether an edge 
corresponds to a true boundary and should be kept or whether it is due to texture and should be suppressed. 
Since texture is image characteristics of a relatively large area, we must use image characteristics derived from 
larger areas in order to distinguish edges due to texture. To this end, we use the measure of diversity proposed 
by Zamperoni [45], which is defined as a distance between the vectors of the rank-ordered gray levels in the two 
symmetrical subwindows which are set at each edge point. We construct a boundary likelihood index (BLI) to 
distinguish boundary edges from non-boundary edges by combining the foregoing ESI and the measure of 
diversity. More concretely, we define BLI of each edge as the product of ESI and the measure of diversity. 

The measure of diversity is defined as follows. The observation window W of a Lw Lw pixel area centered 
on a current edge pixel P is set as shown in Fig. 7 (a) and the four pairs of the symmetrical subwindows Wku,
Wkv, k = 1, ,4 are defined in the observation window W as shown in Fig. 7 (b). The number 4 is chosen as a 
compromise between the angular resolution of edge directions and the computational complexity. The gray 
levels observed in each subwindow form a histogram as shown in Fig. 8 (a) and form the vector of its  
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Fig. 7. Observation window: (a) the observation window W centered on the current pixel P, and (b) the four 
pairs of the symmetrical subwindows Wku, and Wkv, k = 1, , 4 of the observation window W. 

Fig. 8. Histogram and vector: (a) the histogram of the gray levels of one of the subwindows, and (b) the vector 
of the rank-ordered gray levels of one of the subwindows plotted against the rank i (i = 1,     , N).

rank-ordered gray levels as shown in Fig. 8 (b). Let Uk = (uk1, uk2, , ukN,) be the vector of the rank-ordered 
gray levels of the pixels of the subwindow Wku and Vk = (vk1, vk2, , vkN,) be the same for the other side 
subwindow Wkv, where N is the number of pixels in each subwindow. The Tanimoto distance [46] for the 
vectors of each subwindow pair is defined as 

)11(,
,
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where kk VU ,  is the scalar product of Uk and Vk, and kU  and kV  are the Euclidean norms of Uk and 
Vk, respectively. The measure of diversity of an edge pixel P is defined as 
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Taking the function max in Eq. (12) results in finding the edge direction by using the relatively large area of the 
observation window. 

The value of the measure of diversity Dp is between zero and one according to the difference between the 
image characteristics of the subwindow pair irrespective of whether the pixel is in a textured region or in a 
non-textured region. In the ultimate cases, if they are identical, it becomes zero; if they are completely different, 
it becomes one. Consequently, a smaller value of Dp indicates that the edge pixel lies in a region with similar 
image characteristics. In contrast, a larger value of Dp indicates that the edge pixel lies at a border between 
regions with correspondingly different image characteristics. If an edge is due to texture and is not a border of 
different textures, the vectors of the rank-ordered gray levels of both the subwindows become similar and Dp

becomes a smaller value. Therefore, we can use Dp as a measure to distinguish boundaryedges from 
non-boundary edges. It is preferable that the window size Lw is as small as possible in the range where the gray 
levels of the pixels in the subwindow can capture the image characteristics of textures. We empirically found 
that Lw = 17 is best for the images which we tested. The results shown in this paper are those which were 
obtained by using this value. 
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The next problem is how to compute the measure of diversity Di of an edge i on the basis of the Dp values of 
the constituent edge pixels. Since a long edge may pass through some different regions, the average of the Dp

values of the entire constituent edge pixels is not suitable to represent in what region the edge lies. Thus, we 
compute the moving average Da j of the Dp values at each edge pixel j and define Di by the maximum value of 
the Da j values: 

)13(.}{max ja
j

i DD

We empirically found that the moving average computed by using an operator size equal to the mean of the 
pixel numbers of the entire salient edges gave good results. The results shown in this paper are those which 
were obtained by using Di computed in such a way. 

Now, we define the boundary likelihood index (BLI) of a salient edge i as 

)14(.* iii DEB

This equation means that BLI is a value of ESI which is reduced according to the differences between the image 
characteristics of the areas at either side of the edge. That is, the smaller the difference is, the smaller the 
magnitude of Bi becomes compared to Ei, and vice versa. 

Since the values of BLI are real numbers, its histogram is formed by using bins of a size BS2. For the bear 
image, the histogram in the case of BS2 = 0.015 is shown in Fig. 3 (c). The part above the threshold 1.08 of the 
ESI histogram shown in Fig. 3 (b) corresponds to the histogram in Fig. 3 (c). From these, we can see that Eq. 
(14) can effectively produce suitable values of BLI to distinguish boundary edges from non-boundary edges by 
the effect of Di, as the produced boundary edge map shows later. 

Generally, the histogram of the BLI values of the salient edges consists of two populations: the first 
population of which elements are largely non-boundary edges with low BLI values and the second population of 
which elements are largely boundary edges with high BLI values. The shape is almost unimodal as shown in Fig. 
3 (c). That is, the peak of the first population is very high and clear, whereas the histogram bars of the second 
population are fluctuated and sparse. There exist multiple peaks and valleys and consequently the border of the 
two populations is not clear. The problem is how to determine a suitable threshold to separate these two 
populations. 

Over the years, many histogram-based thresholding methods have been proposed. We tested the methods 
proposed by Rosenfeld [44], Otsu [47], Kittler [48] and so on, which we considered promising for this problem. 
However, we found that these methods do not work properly and in most cases produce too large threshold 
values. On the other hand, Sahasrabudhe [49] proposed a threshold selection technique by detecting a deep 
valley using the geometric mean of the depth values of the valley, which seems promising for this problem. 

Inspired by the Sahasrabudhe method, we devised and present a depth-curvature based valley seeking 
method (DCVSM) in order to solve this problem. Our method consists of the following two stages: gaussian 
filter smoothing and deep valley-seeking stages. We assume that a suitable threshold is at the bottom of the 
deepest and sharpest valley. 

At the former stage, in order to reduce small fluctuations in the histogram bar heights, the histogram is 
convolved with a gaussian filter of which standard deviation is and filter size is W. We assume that a 
suitable threshold exists in the range where the BLI values are smaller than the mean of the values; we control 
the degree of smoothing by the number of the local minimums of the histogram bar heights in that range.  
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Fig. 9. The histogram of BLI values and the notations. 

That is, the convolution is performed at least one time and repeated until such a number of local minimums 
becomes equal to or below the given number of local minimums. 

At the latter stage, the candidates of thresholds are detected from the valleys of the smoothed histogram and 
the most suitable one is selected by a suitability measure, which is represented by the product of the measure for 
the depth of a valley and the curvature at the bottom of the valley. Let P0, P1, …., Pn be consecutive peak values 
in the smoothed histogram forming valleys of which values are V0, V1, …., Vn. See Fig. 9. The valley Vk is 
formed by the peaks Pk and Pk+1 and represented by a parabola through these three points defined as  

)15(.** 2 cxbxay

By Eq. (15), the bottom of the valley Vk b is located and the curvature at the bottom of the valley and the 
threshold xt are computed by 
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Its depths with respect to the two peaks are (Pk – Vk b) and (Pk+1 – Vk b), respectively. The measure for the depth 
of this valley is defined by the square of the geometric mean of these two values as 
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The geometric mean is more desirable for selecting a balanced valley. The suitability measure S of this 
threshold is defined as 
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The algorithm of DCVSM is given below. 
Let Ne and Ng be the number of the local minimums of the histogram bar heights which exist in the range where 
the BLI values are smaller than the mean of the values and the given number of local minimums, respectively. 
Step 1: Compute the bin number which corresponds to the mean of the initial BLI values.
Step 2: Convolve the histogram with the gaussian filter defined by and W.
Step 3: Compute Ne.
Step 4: Compare Ne with Ng. If Ne is larger than Ng, then go to Step 2, otherwise go to Step 5. 
Step 5: Normalize the histogram so that the summation of the bar heights becomes one.  
Step 6: Detect the peaks and valleys in the normalized histogram. 
Step 7: Compute xt, C, D, and S for each valley. 
Step 8: Search the valley corresponding to the maximum value of S (Smax) and select its location xt as the most 

suitable threshold Tb.
The shape of the histogram of BLI values changes extremely with the bin size used to form it. If the bin size 
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is very small, the histogram is sparse and there are many shallow valleys. If the bin size becomes larger, the first 
peak becomes higher and a few deep and sharp valleys emerge. If the bin size becomes very large, there exists 
no valley and the shape becomes unimodal. In the case of the most suitable bin size, the deep and sharp valley 
which can separate two populations can emerge. Therefore, the bin size is very important in selecting a suitable 
threshold. At present, however, it is difficult to determine the most suitable bin size for a given image 
theoretically, because the suitability of a threshold should be evaluated by the boundary edge map produced 
using it. However, we empirically found that a good threshold exhibits a large value of Smax, though the 
threshold corresponding to the largest value of Smax does not necessarily produce the most satisfactory boundary 
edge map. Therefore, we can use Smax as a cue to select a good threshold. We empirically found that the suitable 
bin size exists between 0.001 and 0.03 for the images which we tested. Therefore, we adopted the following 
strategy: we compute thresholds using bin sizes at an interval 0.001 in this range and select several thresholds 
exhibiting larger values of Smax from them as candidates; then, we produce boundary edge maps by using these 
candidate thresholds and select the most satisfactory one from them. If we want more desirable results, we can 
use a threshold tuned manually in the neighborhood of such an automatically computed threshold. 

Our DCVSM has the following features. 
(1) It can detect a threshold at the bottom of the deepest and sharpest valley near the first peak in the 

histogram.
(2) It can detect a good threshold which can separate the two populations by using the smoothing of the 

histogram to eliminate small fluctuations and controlling its degree semi-automatically. 
(3) The accurate location of a threshold can be computed by using parabolic interpolation. 
(4) The best threshold can be selected by changing the bin size and using Smax as the cue for the suitability. 

The values of the parameters , W, and Ng need to be determined in order not to eliminate essential 
changes in histogram bar heights. We empirically found that = 1.0, W = 3, Ng = 3 are best for the images 
which we tested. The results shown in this paper are those which were obtained by using these values. For the 
bear image, the best threshold Tb = 0.0963 is obtained in the case of the bin size BS2 = 0.015 (see Fig. 3 (c)) 
using the parameter values described in Section 3. By using this threshold, the boundary edge map shown in 
Fig. 2 (f) is obtained. The number of the selected boundary edges is 48. Comparing Fig.2 (f) to (e), we can see 
that most of the non-boundary edges in the textured regions are eliminated by the effect of Di in Eq. (14). 

Our approach is classified into the method considering only the features of each edge, regardless of the 
reciprocal relation of edges, in order to detect boundaries. In the related work, for example, the following 
characteristics were used: gradient magnitude and continuity [1], length and contrast [9], gradient magnitude 
and surrounding texture edges [12, 13], gradient magnitude and edge presence confidence measure [15], length 
and gradient magnitude [16, 17], distances between textures called the measure of diversity [18]. Our approach 
is distinguished from these methods in following respects. 
(1) ESI of each edge is a linear combination of its length, mean gradient magnitude, and EBSM which can 

provide a flexible expression of edge saliency for us. The length and mean gradient magnitude are adjusted 
based on the MFN method so as to consider the differences between these characteristics of each image 
automatically. 

(2) BLI of each edge is represented by the product of ESI and the measure of diversity considering the image 
characteristics of the relatively large neighboring area of the edge. Consequently, it allows us to detect edges 
with high boundary likelihood considering both the edge saliency and the image characteristics around the 
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edge.
Chen [43] presented a measure for representing the structural complexity of a shape contour by using the 

local angles between two consecutive contour segments and evaluating the entropy of the probability 
distribution computed from their histogram. Our EBSM is distinguished from Chen’s method in the following 
respect: we define an edge segment formed by a pair of two consecutive edge pixels and patterns representing 
the directional changes in consecutive edge segments; for each edge, we use the histogram for the combinations 
of the patterns of multiple consecutive edge segments to evaluate its smoothness measure. Use of the 
combinations of such multiple consecutive patterns allows us to represent the more complex variations of the 
positions of edge pixels. 

Our DCVSM is distinguished from Sahasrabudhe’s method [49] in that it is devised so as to detect a suitable 
and accurate threshold as follows: the function of smoothing histograms is added to eliminate small fluctuations 
of histograms and the smoothing degree is controlled semi-automatically, and the accurate location of a 
threshold can be determined by combining the depth and curvature of a valley using parabolic interpolation. 

3. Experiments and the results 

 

We performed the experiments on the RuG [37], Berkeley [38], and South Florida [39] data sets using the 
Java implementation of our method under Windows XP. For computation of EBSM, the two-pattern 
combination was used. 

We evaluated the selected boundary edge maps quantitatively by the F-measure using human-marked 
boundaries as the ground truth. Let DB, GT, and CB be the number of the pixels of the boundary edges which 
are actually detected by the algorithm, the number of the pixels of the ground truth edges, and the number of the 
correctly detected pixels in DB, respectively. The precision P and the recall R are defined by the ratios of CB to 
DB and CB to GT, respectively. The F-measure is defined as 

)20(.2
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Human-marked boundaries are different according to the observer’s subject and not perfect; some boundaries 
are missing and the locations are displaced. Therefore, in computing the values of CB, the localization tolerance 
needs to be considered. We used a distance of dmax as the localization tolerance as in [26], where as the value of 
dmax, one percent of the image diagonal (2.88 pixels) was used. Since the locations of our selected boundary 
edges are represented in pixels, we used dmax = 3 pixels. Since the Berkeley data set is region segmentation data 
and the extracted boundary edges from it are two pixel wide, we counted one pixel of the ground truth boundary 
edges among dmax.

Our method has several parameters whose values the user needs to determine. The parameter values which 
are hardly dependent on the characteristics of each image and thus can be determined mainly based on the 
strategy to obtain good solutions are described in the foregoing Sections. The remaining parameters to be tuned 
are Wg and Ws in Eq. (10), and Km in Eqs. (8) and (9). We tuned these parameter values using the following five 
images of the RuG data set: bear, elephant, rhino, golfcart, and tire. We selected these images containing various 
objects with the aim of obtaining suitable parameter values which can be used in common for other various 
images. We tuned these values trial and error according to our subject so that the best boundary edge maps were 
obtained. As a result, the best values were Wg = 0.8, Ws = 0.5, and Km = 0.3. 

We performed the experiments by using these parameter values in common for all images which we tested 
and produced the boundary edge maps by using the threshold values computed by DCVSM automatically. We  
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            (a)                   (b)                   (c)                   (d) 

           (e)                    (f)                   (g)                   (h) 

Fig. 10. The results on the RuG data set: (a) elephant_2 (F = 0.791), (b) rhino (F = 0.748), (c) golfcart (F = 
0.784), (d) tire (F = 0.758), (e) buffalo (F = 0.699), (f) gazelle (F = 0.766), (g) gnu (F = 0.785), and (h) lions (F
= 0.758). 

selected the best boundary edge maps in the way described in Section 2.8. Here, we show the obtained best 
boundary edge maps with the F-measure values (F). We report on as many images containing different objects 
as possible in order to show the effectiveness of our method and compare our results qualitatively with the 
results in the previous papers. Figures 2 and 10 show those on the RuG data set. Figure 11 shows those on the 
Berkeley data set. In the Berkeley data set, since multiple segmentation data by different users are provided, we 
show which one we used. Figure 12 shows those on the South Florida data set. 

In addition, we show the results of the experiments for the relationships between the performance and the 
parameter values on the bear image. Figure 13 shows the relationships between the F-measure, precision, and 
recall and the parameter values Wg, Ws, and Km. The fluctuations in the F-measure are due to the fluctuations in 
the threshold values caused by the changes of shapes of the histograms of BLI which were formed using  
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     (a)           (b)          (c)          (d)           (e)           (f)          (g) 

                        (h)                (i)                  (j) 

Fig. 11. The results on the Berkeley data set: (a) no.78004 (F = 0.678 for #1130), (b) no.101085 (F = 0.561 for 
#1123), (c) no.101087 (F = 0.760 for #1119), (d) no.102061 (F = 0.580 for #1123), (e) no.271035 (F 0.545 for 
#1130), (f) no.198004 (F = 0.692 for #1123), (g) no.302003 (F = 0.562 for #1119), (h) no.119082 (F = 0.625 for 
#1124), (i) no.113044 (F = 0.676 for #1123), and (j) no.232038 (F = 0.633 for #1123). 

different bin sizes. Figure 14 shows the results with the best-tuned parameter values of which only one 
parameter value was changed to the lower limit or the upper limit of the nearly optimal range of the parameter 
values. Figure 15 shows the relationships between the F-measure, precision, and recall and the threshold value 
Tb which was manually changed. Fig. 16 shows the precision-recall curve for the bear image. Table 2 shows the 
mean and standard deviation of the F-measure for the RuG data set (40 images). For reference, those by the 
Papari [24] and Grigorescu [12] methods which were read from Fig. 16 in [24] are shown. 

The major difference of the computational complexity between the standard Canny edge detector and our 
method is the processes of the edge following and computation of ESI values, and the process of the 
computation of BLI values. For the RuG data set (40 images), the average computation times were 0.37 second 
and 0.15 second for the former and latter processes, respectively on a PC with a Pentium 4 CPU 3.20 GHz.
Since we adopt the strategy of computing the BLI values after selecting the salient edges, its complexity is not 
so high. 
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                          (a)               (b)                 (c) 

Fig. 12. The results on the South Florida data set: (a) no.101 (F = 0.778), (b) no.214 (F = 0.840), and (c) 
parkingmeter (F = 0.821). 

Fig. 13. The relationships between the F-measure, precision, and recall, and the parameter values Wg,, Ws, and 
Km, respectively, for the bear image. 

In evaluation of boundary detection methods, we should note the following. The desired boundaries are 
different depending on the use. Also, as human-marked boundaries indicate, boundaries perceived by the 
observers are different according to their subject. Therefore, the evaluation of boundary detectors is more or less 
dependent on these conditions. 

The results of the experiments are summarized as follows. 
(1) From Fig. 2 (d), (e), and (f), we can see that the relatively good estimate of the boundary edge map of the 

bear image is produced, because ESI and BLI work effectively to represent the saliency and the boundary 
likelihood of edges, respectively. 

(2) From the optimum values of Wg and Ws, we can see that the length measure is most important and the mean 
gradient magnitude measure follows it. From Figs. 2 (f) and 14 (c), we can see that EBSM contributes to  
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                        (a)                (c)                  (e) 

                        (b)                (d)                  (f) 

Fig. 14. The results on the bear image with the best-tuned parameter values of which only one parameter value 
was changed into the following value: (a) Wg = 0.6, (b) Wg = 1.0, (c) Ws = 0.0, (d) Ws = 0.7, (e) Km = 0.2, and (f) 
Km = 0.6. 

Fig. 15. The relationships between the F-measure,         Fig. 16. The precision-recall curve for the 
precision, and recall, and the threshold Tb for the bear          bear image. 
image. 

eliminating non-boundary edges which can not be eliminated by only the length and mean gradient 
magnitude measures. 

(3) From Figs. 10, 11, and 12, we can see that the parameter values of Km, Wg, and Ws tuned by the five images 
produce the relatively good boundary edge maps of the other images and thus ESI based on the MFN 
method works effectively to adjust the differences between the characteristics of natural images. 

(4) From Figs. 13 and 14, we can see that there exist the relatively wide ranges of almost optimal values of Km,
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Table 2: The mean and standard deviation of the F-measure values for the RuG data set (40 images). 

Wg, and Ws, and thus the performance is not so sensitive to the these parameter values. From Table 2, we 
can see that the standard deviation of the F-measure is relatively small and thus the performance is robust. 

(5) From Figs. 3 (b) and (c), and Fig. 15, we can see that the thresholding methods based on the histogram 
concavity analysis and DCVSM work effectively to determine suitable thresholds automatically. In Fig. 15, 
the recall value is equal to 0.943 for Tb = 0.0; this shows that the salient edge map contains almost all the 
pixels of the ground truth edges, because the edge following method and the thresholding method based on 
the histogram concavity analysis work effectively. Fig. 15 also shows that the threshold Tb = 0.0963 
determined by DCVSM is almost optimal. 

(6) From these results, it can be seen that the local image-feature integration method (LIFIM) and its 
components work effectively to detect edges with high boundary likelihood in the natural images. 
Since the details of the implementation of the algorithms and the parameter values used are not clearly 

described in the previous papers and thus it is impossible to reproduce the same results reported in the previous 
papers, it is difficult to make quantitative comparisons between the results by our results and those in the 
previous papers. Therefore, for the convenience of the qualitative comparisons of the readers, we refer to the 
Figures in the previous papers which correspond to those by our methods: Figure 1 in [5]; Figs. 7 and 9 in [12]; 
Figures 9, 10, 11, 12, 17, 18, 19, and 20 in [13]; Figures 8, 9, and 10 in [14]; Figs. 11 and 12 in [15]; Figs. 3 and 
7 in [17]; Figs. 15, 19, and 20 in [24]; Figs. 15 and 16 in [26]; Fig. 18 in [28]; and Figure 8 in [29]. From the 
qualitative comparisons with these previous results and the quantitative comparisons shown in Table 2, it can be 
seen that our results are almost comparable to most of those of these previous papers. It should be noted that our 
method considering only the features of each edge can produce the results almost comparable to most of those 
of the modern approaches based on the more complex techniques such as the edge element grouping techniques 
and the learning processes of prior knowledge on boundaries. 

The algorithms of most of the modern approaches described in Section 1.2 are very complex, difficult to 
implement, and computationally demanding. In contrast, our method is simple and easy to implement, less 
troublesome to tune, and computationally cheap. Although our method uses several parameters that the user 
needs to tune, once the user tunes them using several images, they can be used to other images in common. 

The limitation of our method is derived from Canny’s edge detector which is based on the ideal step edge 
model and gray levels in a small 3 3 pixel area. The produced edges are apt to be fragmentary. Also, it is 
difficult to detect boundaries between textured regions. Resolving these problems is our future work. A 
possible idea to resolve the first problem is the edge completion using boundary edges detected by our method 
as the seeds. 

We have proposed a method for detecting boundary edges based on the local image-feature integration 
method using the modified Canny edge detector, and performed experiments to investigate and evaluate its 
performance on the standard image data sets. The results have shown that our method works effectively and can 
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produce relatively good estimates of boundary edges in natural images and its performance is robust. Our 
method has the feature that once the user tunes the parameters using several images, they can be used to other 
images in common. 
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