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 ABSTRACT  : In this paper, the ability of the class  ADF(oo), where an arc can hold any 

number of tokens, is investigated and is shown to be equivalent to EF as similar to the class 

ADF(1) where an arc can hold at most one token. Further, the class  DP;  (co)is shown to have 

an ability greater than or equal to that of the class  DFarb(00)•

1 Introduction

The dataflow language is a programming language describing parallel processing based 

upon a flow of the data, and is entirely different from the conventional languages that have 

positively described order control in some meanings [1] [2]  [3]. It is quite interesting to 
discern what kind of expression ability the language based upon such a principle possess as 

a programming language. In these days, comaprison of programming languages are made 

by considering the class of functionals realized by program  schemata  [4]  [5]. A program 

schema becomes a program when an interpretation is given. An interpretation gives a data 

domain, and gives a function for each function symbol and gives a predicate for each predi-

cate symbol. 

 As the descriptive process to now, it is at first shown that the class DF of a simple dataflow 

schemata has the expression ability equivalent to the class EF of effective functionals in the 

total interpretaions[6]. In total interpretation, all the functions and predicates given to each 

function symbols and predicate symbols are totally defined on the data domain. In real 

programming environment, however, functions or predicate which should be realized by 
subroutines or functions are not necessarily totally defined. Therefore, expressive power of 

program schemata should be compared in partial interpretaions, where functions or predi-
cates can be partially defined. In partial interpretation, it is shown that the class DF is e-

quivalent to the class of deterministic effective functionals  EFd which is a proper subclass 
of  EF[7]. This means that the class DF has the expressive power which can be realized by 

the class of sequential program schemata. 

 To show that the class of dataflow schemata is powerfull than the class of sequential 

program schemata, the class ADF of dataflow schemata is proposed and is shown to have the 
expressive power equivalent to the class EF in partial interpretations  [8]. To investigate the
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expressive power of the class of dataflow schemata, it is important to distinguish between 

cases where an arc can hold any number of tokens and the cases where an arc can hold one 

token at most. To distinguish these cases explicitly, we append(  ,u) after the class name.  du 
=1 means that an arc hold one token at most, and  p =  co means that an arc can hold arbit-

rary numbers of tokens and can be considered as FIFO queue. Using this notation, Jaffe's 

DF is written as  DF(00), and Matsubara and Noguchi's ADF should be written as ADF(1). 

ADF is stregthend with two kind of capabilities than the class DF. One is the arbiter and the 

other is the open recursive procedure. Therefore, it is problematic whether the both capa-

bilities are necessary for ADF to be equivalent to EF. To answer the question, the classes 

having only one capabily have been investigated. However, it was difficult to decide whether 

the class  DF,b(00), which utilizes the arbiter solely, incudes the class  DFa  rb(1) or not. 

Therefore, we have introduced the new class  DF,(oo) utilizing a new device pr-gate instead 

of the arbiter  [11]. 

 In this paper, we investigate the expressive power of the class  ADF(co) and show that the 

class is also equivalent to EF in partial interpretation. Further, we investigate the relation 

between  DF7,(00) and  DF.  b(C°), and give the relation  DF,r(co)aDF,(00).

2 Program Schemata

The program schema (hereafter just called schema) includes finite types of function symbols 

and finite types of predicate symbols, and the number of the arguments of the individual 

symbols is settled. In this paper, the function symbols are taken from the set  .F=  {F1,F2,...} 

and the predicate symbols are taken from the set  P={P1,P2,...}. Rf and Rp expresses the 

numbers of the arguments of  f and p respectively. For the sake of simplicity, let RFi  > 1 

and RPi >_ 1 with respect to arbitrary i  > 1. On the other hand, variables are taken from the 

set  X=  {X1,X2,...}. 

 When interpretation is given, the schema becomes a concrete program. The program gives 

at most one calculation result by executing concrete calculation when input values are 

provided. 
 DEFINITION  2.1 

 We assume that the set of the function symbols and predicate symbols included in the 

schema S are repectively  F=ffi,f2,...,fml and P=  {p1,...,p,}(Fc.F,PcP). Then the interpretation 

I for the schema S gives the data domain D, gives a map from  DR  f to D for each function 

symbol  f, and gives a map from  DR  fto truth-and-falsity value {F,T} for each predicate 

symbol p. 

 When all of the maps given by the interpretation are defined on whole region of the 

domain D, the interpretation is called the total one. The partial interpretation is an inter-

pretation which give maps not necessarily totally defined. Hereunder, interpretation means
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an partial one.

 DEFINITION 2.2 

 We assume that two schemata Si and  S2 have simultaneously the set  X  c X of the input 

variables, the set  Fc,T  of the function symbols , and the set  Pc2  of the predicate symbols . 
Provided that  S1 and S2 respectively output the same value or do not respectively outp ut at 
the same time when interpretation I is given ,  S1 and S2 are said to be equivalent under I. 
On the other hand provided that they are equivalent under arbitrary interpretation

, they are 
said to be just equivalent. 

 When there exists a schema of the class  /3 equivalent to the individual schema of the 

class  a, it can be written that  a  /3 and  /3 is said to include  a . When  a,  /3 and /3  ce, 
this relation is expressed as  a,  --7=  /3 and the two classes are said to be equivalent . When  a 

 /3 is satisfied and there is a schema of  /3 which cannot be simulated by one of  a ,  it is 
written as  a, <  /3 and  /3 is said to properly include  a .

  In the next stage, let the computation composing an effective functional be defined . 
  DEFINITION 2.3 

  (a) Let X c X be a finite set of the input variables, let F c  .T be a finite set of the func -
tion symbols, and let P  c P be a finite set of the predicate symbols . In this occasion, let A 
and  H be the minimum set sufficing the following conditions . 

 I.  X  c A 

  II. For  each  f  E F and  ei, ...,eRf  EA, 

  III. For each p  E P and  el  , ...,eRp  E  A, 

 P(ei  ,...,eRp)E  H and  1  p(ei  ,...,eRp)E  II 
 where—Us the symbol expressing the negation . 

  The elelments  of  A  is called an expression concerning X and F , whereas the elements of 
 H is called a proposition concerning X, F and P. 

 (b) The computation is a sequence comprised of an expression and proposition , and is 
finally terminated with the expression . Therefore, the elements of (A U  II)*A are the com-

putations. 

 When the interpretation  I is given and the elements of D are given to the each input 

variables, the value of the computation is defined as shown below . That is to say, if and only 
if, the expressions and propositions composing the computation are all defined and the 

propositions have all true values, the computation has a value . The said value is the one of 
the final expression.

 DEFINITION 2.4 

 The effective functional  S, an element of the class EF , is defined by the 4 - tuple S= <X, 
F,P,T> . This is a recursively enumerable set of computations .
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Here, 

 (1) Let X c X, F  c  .7", and P c  I" be finite sets of the input variables, function symbols, 

and predicate symbols. 

 (2) T indicate the Turing machine, and outputs the i-th calculation  r(z) with the positive 
integer  i as an input under proper coding. 

 (3) Provided that the computation for more than 2 inputs, e.g.  T(z) and  TO has values 
when interpretation and input are given, let it be assumed that they are the same values. 

The said value is the value of S.

                        3 Dataflow Schemata 

The dataflow schema is a kind of the program schema, but the way of the execution is made 
in parallel in accordance with the flow of the data. 

 In the class of dataflow schemata, it is necessary to distinguish the case where an arc can 

hold at most a token and the case where an arc can hold arbitrary numbers of tokens. 

 Both classes are equal from a viewpoint of the syntax. When the arc holds arbitrary 

number of the tokens, the order of the tokens is maintained. That is to say, the arc plays a 

role of FIFO. 

 Definition 3.1 

 The schema belonging to the class  adflco) or  adfil) is a finite sequence generated from 

 <Schema> in accordance with the grammar shown below. 
  <Schema>  :  :=Program <SchemaName>  (yd:xf,..,xg); <MainBody> ; <DeclarationPart> 

  <MainBody>  :  := <Body> 

  <DeclarationPart>  :  :=  E  I <Declaration> 

I <Declaration> <DeclarationPart> 
   <Declaration>  :  :=Procedure <ProcedureName>  (371,...,Y,:xi,...,xs) <Body> ; 

  <Body>  :  := <InitialSetting> ; begin <StatementSequence> end 

  <StatenmetSequence>  :  := <Statement>  I <Statenment> ; <StatementSequence> 

  <Statenment>  :  := 

    Yd=f(xii,...,x%/0c=13(xg,...,xG) 

 yd=Td(vc  ,xd)  y  d  =F  d  (v  c  ,xd)  I  y  d  =Md  (v  c  ,xc!,x,) 

 yc  =Tc(vc  ,xc)  I  yc=Fc(vc,x9  I  yc=Mc(vc,xf,xD 

 (yf,...34)=1-d(xd)  I  (yi,...,Y0=1-c(xc) 

 3Tc=x  •  x  I  3Tc=x?Vx  I  yc=Ixc: 

 (371,...,y r)= <ProcedureName> 

 yd  =  Arb(xci  ,xg) 
    <InitialSetting>  :  :=init <SettingSequence> end 

  <SettingSequence>  :  :=  <SettingSetatement>
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   <SettingSetatement> ; <SettingSequence> 

   <SettingSetatement>  :  :=yc:=Tlyc:=F 

  In the above, let n, r,  sl,yd,xd,etc. indicate data arcs.  yc,vc,xc,etc. denote comtrol arcs. 
y, x, etc. represent data arcs or control arcs. Let the arcs be expressed by the elements of 
the set X. 

  With  (yd:xcil,...,xZ) after <SchemaName> ,yd shows the output arc of the schema, whereas 
       is shown to be the input arc of the schema . are concurrently the input vari-

ables. 

  On the declaration of procedure ,  y1,—,377- on the left of show the output arcs from the 
procedure and  xi ,...,x, on the right of show the input arcs to the procedure . 

  The statements including T, F, M, and L in their right-hand side show respectively T-
gate, F-gate, merge, and link. The superscripts d and c on the right shoulders show that 
they stands for data token and control token as operation objective , respectively. When the 
matter common to these is discussed,  'd' and  'c' are sometimes omitted. The link has more 
than one piece of the output arc . 

  The statements including <ProcedureName> in the right -hand side show a call of the 

procedure.  x  s are the input arcs to the procedure , whereas  y1,—,yr are the output arcs 
from the procedure . This <ProcedureName> is declared in the declaration part , and let the 
number and type of the input/output arcs be in agreement with the declaration time . 

  The statements including  'Arb' show the arbiter . 
 f indicates the function symbol taken from whereas p denotes the predicate symbol 

taken from P. 

 The arc appearing in a schema appears precisely one time on the output arc or in the 
right hand side of a statement in the schema , and appears precisely one time as the input 
arc or in the left-hand side of a statement in the schema. 

 The individual statements referred to above are illustrated in Fig. 3.2. The data arc is 
depicted by the arrow as Fig .3.1(a), whereas the control arc is sketched by arrow as Fig.3.1 
(b). The arrow of Fig.3.1(c) exhibits either of the data arc or control arc. The initial setting 
is exhibited by  • as Fig3.1(d) on the arc . 

 In Fig.3.2(o), x' , y' , etc. are the arcs at the time of the declaration . The input arcs and 
the output arc of the schema, are clearly depicted as Fig.3.2(p), (q). 

                     (a) data arc (b) control arc 

                      (c) either of data arc control arc 
 • 

                   (d) token 
                    Fig.  3.1 Some depictions of arcs and token.
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 In the description below, let the figure and statement be used according to requiement on 

the assumption that they are equivalent to each other.

 Definition3.2 

 The semantics of  adfico) : the schema of  adfico) is driven into an action as shown below 

when interpretation I is given and input data are provided to the individual input variables. 

 On the control arc, arbitrary pieces of truth-and-falsity values are placed. On the data 

arc, arbitrary pieces of the elements of the data domain D given by the interpretation I are 

placed. The truth-and-falsity values and the elements of D on these arcs are called tokens, 

and is shown by  • in the figure. 

 In the initial state, the truth-and-falsity values shown by initial setting are placed on the 

corresponding control arcs. On the other hand, let it be assumed that the input data given 

by the individual input variables are placed on the individual input arcs without any rectifi-

cation. The other arcs are left empty. 

 Let it be assumed that the execution is made on the discrete time such as  t=0,1,2,... 

 On the assumption that u is a predicate symbol or function symbol and on the supposition 

that  (u,0,...,cici?J gives the computation time of u(0,...,dcAu). A time function 

r that gives infinity computation time when the value of  u(0,...,dilzi) becomes undefined and 

that gives the computation time of positive integer values when the value is defined in the 

interpretation I is called a time function consistent with the interpretation I. 

 In the next stage, the actions of the individual statements are described. 

 y=u(xcii,...,x02,), where let u be a function symbol or predicate symbol: 

 When there exists a token sequence that is not empty on the individual input arcs at the 

time t= r  0 and its head is  di  ,...,dR  z, , the head token on the individual input arcs is removed 

and the token as the computation result is placed on the tail of the token sequence on the 

output arc y at the time  t=  r  0  +  z  (u,c1f1,...,a.)• 

 y=T(v',x): When T is placed on the head of the token sequence on  vc and the token is 

placed on x at  t=  r  0, the token on the head on  vc is removed at  t=  r  o  +1. Furthermore it is 
noticed that the token on the head of x is transferred to the tail of the token sequence on y. 

 On the other hand, if  F  is placed on the head of  vc and the token is placed on x at t=  ro, 

it is noticed that not only the token on the head of  vc but also the token on the head of x are 

removed at  t=  r  0  +1. 

 The action of  y=F(vc,x) is obtained by inverting the truth-and-falsity value of the 

token on  vc. 

 y=M(vc,x1,x2): 

 When  T  is placed on the head of  vc at t=  r  0 and token is placed on  xl, it is noticed that 

the token on the head of  vc is removed and the token on the head of x1 is transferred to the 

tail of the token sequence on y at  t=  r  o  +1. 

 On the other hand, if F is placed on the head of  vc at t =  r  o and the token is placed on 

 x2, it is noticed that the token on the head of  vc is removed and the token on the head of
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 Fig. 3.2 Graphical notation 

    for each statement
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 yc=x  •  yc=—Dcc: 
 When the token is placed on the individual input arcs at  t=  r  0, the token on the head of 

the individual input arc is removed at t=  r  0 +1. Thus also it is noticed that a token having 

a value of result of the logical operation is placed on the tail of the token sequence on the 

output arc at that time. 

 (34,...,Y`r9=1-d(xd),  (3q,...,34)=Lc(xc): 
 When token is placed on the input arc at  t=  r  0, it is noticed that the token on the head 

of the input arc is removed and the tokens having the same values are placed on the tail of 

the token sequence on the individual output arcs at  t=  r  o  +1. 

 yd  =Arb(xci',xg): 
 When token is placed on  xcil at t=  r  0, it is noticed that the token on the head is transferred 

to the tail of the token sequence on  yd at  t=  r  0  +1. 

 On the other hand when no token is placed on  x`i' and a token is placed on  xg at  t=  r  o, it 

is noticed that the token on the head of  xg is, at  t=  r  0  +1, transferred to the tail of the 

token sequence on  yd. 

 (Yi  ,...,Yr)= <ProcedureName>  (x1,...,x8): 
 In lieu of this procedure call, the body part of the declared procedure is expanded. 

However, let it be understood that the arc name will be systematically changed at that time 

so that an arc with the same name will not come into existence. 

 Let it be understood that the input/output arc at the time of declaration will be replaced 

with the arc at the time of call. 

 Let it be understood that the value of the token placed for the first time onto the output 

arc in the schema will be the output result of the schema.

 Definition 3.3 Semantics of adf(1): 

 When interpretation I and input values are given, the schema of adf(1) is fundamentally 

driven into action the same as in the case of the schema of  adf(co) except that a single piece 

of token at most can only be placed on the arc. 

 In the description hereunder, the action of the individual statements is explained. 

 y=u(xii,...,xL), where let u be a function symbol or predicate symbol: 
 Time function r is as same as in the Definition 3.2. 

 When tokens  d1,...,dRzi are placed on the individual input arcs and concurrently no tokens 

are placed on y at the time t =  r0, it is noticed that at t=  ro +  r(u,0,...,c1L), the tokens 

on the individual input arcs are removed and the token of the computation result is placed on 

the output arc y. 

 y=T(vc,x): 

 When T is placed on v  C at  t=  ro and token is placed on x and concurrently no token is 

placed on y, the token on  vc is removed at  t=  r  0 +1. Thus it is noticed that the token on x 
is transferred onto y. 

 When F is placed on  vc at  t=  r  o and token is placed on x and concurrently no token is
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placed on y, the token on x and the token on  vC are removed at  t=  1-0  +1 . Thus it is not-
iced that y remains empty. 

  The action of y =  F(vc,x) is the one obtained by reversing the truth -and-falsity value of 
the token on  vc. 

 y=M(vc,xi,x2): 
  When T is placed on  vc and token is placed on  x„ and concurrently no token is placed on 

y at t=  s-  0, it is noticed that the token on  vc is removed and the token on  xi is transferred 
 on  y  at  t=  'to  +1. 

  On the other hand, if F is placed on  vc at t =  T.° and the token is placed on x 2 and concur-
rently no token is placed on y, it is noticed taht the token on  vc is removed and the token 

on x2 is transferred on y at  t=  r  0  +1. 

 yc=xf  xi,  y=xf  <)c,  37c=—Ixc: 

  When tokens are placed on the individual input arcs and no token is placed on y at t= 

 r0, it is noticed that the tokens on the individual input arcs are removed and the token as 

the result of the operation is placed on the output arc . 

 (34,...,34)=Ld(xd), 

 When a token is placed on the input arc and concurrently all the output arcs are empty 

at  t=  D0, it is noticed that the token on the head is removed and the tokens having the same 

value are placed on the individual arcs . 

 yd=Arb(xci',x0: 
 When a token is placed on  xcil at t=  r  0 and no token is placed on yd, it is noticed that the 

token on  xf is transferred onto yd at t=  r  0+1 . 
 On the other hand when no token is placed on  x`ii and token is placed on  xl and concur -

rently no token is placed on  yd at t=  r0, it is noticed that the token on  x2 is transferred to 

yd at t=  rip +1. 

 (371,...,yr)= <ProcedureName>  (xi  ,...,x8): 

 In lieu of this procedure call, the body part of the declared procedure is expanded . Here, 
let the arc name be changed systematically so that no arc having the same arc name will 

come into existence. Let the input/output arc at the time of declaration be replaced with the 

one of the procedure call. 

 Let the value of the token to be placed on the output arc in the schema for the first time 

be the output result of the schema. 

 Definition 3.4 With respect to  du  =1 or  00,  ADF( is the class comprised of the ones 

sufficing the 2 conditions shown below in the schema of the class  adfl  ,u). 
 (1)When interpretation I and input value are given, the same result is provided for an 

arbitrary time function r consistent with I. 

 (2) In the procedure declared recursively, there is no statement that can be driven into 
action in an initial state. (That is to say, no action is started until the token comes in from 

the other part. Thanks to this condition, the procedure can be expanded corresponding to
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necessity.) 

Definition 3.5 With respect to  ,u  =1, 00, the schema of the class  DF(  p) is comprised of the 

ones not including the arbiters, call and declaration of the procedure in the schema of the 

class ADF(  p). 

Definition 3.6 With respect to  /1=1, oo, the class  DFa  r  b(  12) is comprised of the ones includ-

ing no procedure call or no procedure declaration, in the schema of  ADF(  p). 

Definition 3.7 The class  DF7,(00) is the class givin by adding a  -gate as possible individual 

statement in the class DF(co). The  -gate is a statement in style of  yc =  r(vc,x). 

 On one hand, the token on the top of  vc is removed and F is added to the tail of  yc at the 

time  t=  r  0  +1, provided that there exist a token on the input arc  vC and there is no token 

on x at the time  t=  r 0. 

  On the other hand, the token on the top of  NT' and x are removed and T is added to the 

tail of  yc at the time  t=  0  +1, provided that there exist a token on each of the input arcs 

 at  t =  Do. 

  Let the statement be illustrated as the depiction shown in Fig. 3.3.

                             Fig. 3.3  y  c=  (vc,x) 

Arbiter and  7t -gate posseses a timing dependent property. That is, the value of the output 

token depends on which token is inputted faster.

 Definition 3.8 

 (a)Boolean graph is an acyclic part of dataflow schema comprised exclusively of logical 
operaotors and control links of the form as follows: 

 yc  =x  xz,  yc=xf  V  xz,  yc=—Ixe,  (37f,..,37)=L(xc) 

 (b)When a Boolean graph having r input arcs and s output arcs satisfy the following 
conditions(1) and(2), the graph is said to realize a Boolean function  g:{F,T}r--[F,T1s

   (1)Until a token is inputted to each of input arcs, no token is outputted from any output 
   arc. On the other hand, when a token is inputted to each input arc, a token is outputted 

   from each output arc. 

   (2)Assume that the token inputted to i-th input arc is  bi and let the token outputted 
   from j-th output arc is  ci. Then the following relation is satisfied: 

 <c1,...,cs> 

 For an arbitrary logical function, a Boolean graph realizing the function can easily be 

composed. As is shown in  [6,7], any kind of finite state machine can be composed by  con-

necting the output arcs to the input arcs of a Boolean graph realizing an appropriate logical
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function.

4  EF  E-ADF(  du  )

The purpose of this chapter is to show that any schema S  E EF can be simulated by a 

schema of  ADF(co). Firstly, we should develope a method to evaluate a i-th computation. 

When i is given, the schema of  ADF(co) should simulate a Turing machine to yield the i-th 

computation which should be evaluated. The simulation of the Turing machine is considered 

to be easier for the schema of ADF(co) than for the schema of ADF(1), because an arc can 

be used to simulate a tape of Turing machine. As a matter of fact, Jaffe had developed a 

method to simulate a Turing machine by the schema of  DF(cc). On the contrary, for the 

schema of ADF(1), other method of Turing machine's simulation was necessary. Matsubara 

and Noguchi had developed such a method. Here, we show that the  same method is appli-

cable for the schema of  ADF(co) to simulate the Turing machine. Hereunder, we consider 

ADF(  ,u) for the both cases ,u  =1 and  ,u  =  oo in parallel. The reader is expected to inspect 

the discussion in the bellow whether it is proper for both cases. 

 It is well known that a pair of pushdown stacks attached to the finite controller is enough 

to simulate a Turing machine with a tape of infinite length. 

 In Fig. 4.1(a), a recursive procedure DSTA for that purpose is shown. In this procedure, the 

part enclosed by a one-dot chain line appears repeatedly on a straight line. This part that is 

to be a unit is called a cell. This initial state shows the cell to be in an empty state. The fa-

ct that there exists the control token F on the part upper than the broken line means that t 

he part lower than the broken line is empty. Meanwhile the fact that there exists the con-

trol token T on the part upper than the broken line means that there exists a data token on 

the part lower than the broken line. The data token is maintained on the part of the circle 

drawn in broken line. 

 The action of this procedure is explained as shown below. 

 When a data token is pushed, let the control token T be inputted to C from the left, and 

let the data token desired to be pushed to x be inputted from the left. 

 For the above explanation, the following 2 cases are in consideration. 

 (1) When the cell in question has been empty:

 The control token on the upper side is changed from F to T and the data token 

maintained in the lower side. Nonetheless, no token is outputted either to the left or 

the right.

is 

to
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Fig. 4.1 Construction of DSTACK 
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Fig. 4.2 Motion of DSTACK Fig. 4.3 Procedure  CSTACK(R,y:Z,C,x)

 (2) When the cell has been occupied with data tokens: 

   The control token on the upper side has been T and this value is unchanged. The data 

   inputted from the left are maintained on the lower side, and the data token that has 

   been maintained is outputted to the right. On the other hand, the control token T is 

   outputted from C' to the right. 

 On the other hand when the data token is desired to be popped up, let the control token F 

be inputted from C. With respect also to this, 2 cases are available. 

 (1) When the cell in question has been empty: 

   The control token F is outputted from R to the left side. No token is outputted to the 

   left side in y. To the right side, nothing is outputted. 

 (2) When the cell has been occupied with the data tokens:
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The control token T is outputted from R to the left side, and it is shown that data are 

available. Concurrently with this, the data token that has been maintained is outputted 

from y. To the right side, the control token F is fed from C' and pop of the data is 

demanded.

Complying with the above, the control token T is returned from R' from the right side, 

if data are available. Concurrently with this, the data token is fed from  y'. As a result, 

the control token T is maintained on the upper side, and the data token fed from the 

right is maintained on the lower side.

If no data are available in the right side, the control token F is fed from  R'  and nothing 

is fed from  y'. As a result, the control token F is maintained on the upper side of this 

cell and there remains a state of no token being left.

 As is seen from the above, the part in which the data are maintained exclusively causes 

the action as a matter of reality. None of the other parts causes any actions. By employing 

DSTA, let the procedure DSTACK be composed as shown in Fig. 4.1(b). 

 The actions of DSTACK are shown in Table 4.1, and is illustrated in fig,4.2.

TABLE 4.1 Actions of procedure DSTACK
Input Output

 Z C x R  Y

No Action F any none F none

Pushdown  do T T  do F F

Popup T F none  1•

 indicates F, if the stack has been empty. If not, it indicates T. 

t indicates the data that has been placed on the head ofthe stack. If no data has been placed 

there, nothing is outputted. 
 `any' indicates that each of T or F is acceptable .

 On the other hand, let what has changed T-gate, F-gate, and merge concerning the data 

tokens in the lower part of DSTA into the ones all for the control tokens be CSTA. Further-

more by using this CSTA, let CSTACK be composed as shown in Fig. 4.3. The actions of 

CSTACK are shown  in  Table 4.2.

Table 4.2 Actions of procedure CSTACK
Input Output

 Z C x R  Y

No Action F any any F F

Pushdown  co T T  co F F

Popup T F any t

t indicates F, if the stack has been empty. If not, it indicates T.
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 indicates the true-false value that has been placed on the head of the stack . 

If no token has been placed there, nothing is outputted . 
 `any' indicates that each of T or F is ac

ceptable.

state tokens

Fig. 4.4 Procedure  COMPUTE_1  (w:,u1,...u,,,C)

(a) Latch

 Y

(b) predicate evaluator 
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Fig. 4.5 some elements included in the evaluating part.

As is shown in  [6], an arbitrary finite-state machine can be composed by linking the output 

arc of the boolean graph to the input arc in a shape of a loop, Furthermore, an arbitrary 

Turing machine can be simulated by linking 2 pieces of CSTACK. By linking an evaluation 

part to the Turing machine, the procedure  COMPUTE  1 allowing a computation to be 
evaluated can be composed as shown in Fig. 4.4. Here,  g, is the boolean graph taking part 

of the Turing machine. By taking in at first the token sequence  TiF expressing the natural 

number i and later by imitating the Turing machine T, the procedure composes the i-th 

computation T(i) on a piece of CSTACK. In the computation in question, let the individual 

expressions or predicates be expressed in accordance with the post-fix description method 

and furthermore let proper sectioning symbols be placed among them. 

 With the finite control part, let T(i) be evaluated by contolling the evaluation part after 

 T(i) is obtained. 

 The evaluation part includes a latch(Fig. 4.5(a)) corresponding to the individual input 

variables. This always maintains the input data in a position of circle drawn in broken line, 

and outputs its copies in responce to necessity. On the other hand, the evaluation part includ-

es a predicate evaluator for the individual predicate symbols(Fig. 4.5(b)), and also includes a 

function evaluator for the individual function symbols (Fig.4.5(c)).

Fig. 4.6 An example of 4 to 4 transfer network 
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   Furthermore the part includes a transfer network in order to allow the data tokens to 

be transmitted among these individual elements. The transfer network is the one to transmit 

a data token from an arbitrary point to another point in accordance with the command from 

the finite control part. The important property of the transfer network is that once it is 

demanded to transfer a data token from one point to another, and no data token is inputted 

to the input point, following demand to transfer a data token is obstructed . There is a point 
where any data token transferd by the network should go through. The network is composed 

of two tree structures connected to each other at their root points. One is to collect a data 

token from a leaf to the root, and is made of data-merges. The other is provide a data token 

from the root to a leaf, and is made of pairs of data T-gate and F-gate. An example of a 

transfer network with four inputs and four outputs is shown in Fig.4.6. By giving a proper 

tokens through  a  i and  bi  , the finite controller can transfer a data token from either point 

of  i4 to either point of  ol,...,04. 

  The finite control part evaluates the computation as shown below using such an evalua-

tion part. First of all, let the command to house the input data in the individual latches be 

issued. Secondly, let evaluation be made by successively reading the codes of  T(i) from 

 CSTACK  1. 

 When the code of  xi  E X is read, let the token be taken out from the latch of  xi to be 

pushed to DSTACK. 

 When the code of  f,  E F is read, let  Rfi pieces of the data placed on the head of DSTACK 

be taken out and sent to the  fi evaluator. Let the evaluation result thus obtained be pushed 

to DSTACK. When the code of  pi  E P is read, let  Rpi pieces of the data be taken out and 

sent to the  pi evaluator. Let the result thus obtained be taken in. If the result taken in is T 

then let the evaluation be continued. When the final expression is evaluated, let the value be 

outputted to W then cease the action. When a predicate having the value of F is found in the 

course, cease the action. If a predicate becomes undefined, the finite control part is obstructed 

because the control token from the predicate is not inputted. If a function becomes undefined, 

the data token from the function is not inputed to the inputpoint of the transfer network, and 

then the result of the evaluation of the final expression could not be transfered to the output. 

 As is comprehended from the above, for both case of  it =1 or 00, the procedure 

 COMPUTE_1 is a procedure to evaluate the computation T(i) by taking in the token se-

quence expressing the natural number i. When the procedure possesses a value, T and the 

value are outputted. When a predicate of the falsity value is found in the course, F is out-

putted.
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  Theorem 4.1 (EF  ADF(  /I)) : In both cases that  =1 and  ,tt  =  co, for an arbitrary schema 

S of EF, there exists an equivalent schema S' of  ADF( 

[Proof] By using the procedure  COMPUTE  _1, let a recursive procedure  SIMR  1(Fig.4.7(b)) 
be composed. The procedure INC(Fig4.7(a)) is the one adding 1 to the value of i expressed by 

the token sequence. That is to say, the procedure is the one to allow the evaluation starting 
with the 1st computation to be made succesively. If there is at least one computation which 

gives a result, the data token is transfered through arbiters. By composing the program 
 SIMULATE  1 using this procedure as Fig.4.7(c), any schema S  E EF is evidently simulated. 

                                                                                        Q.E.D. 
 Theorem  4.2(ADF(00)-EF):F  or any schema S of the class  ADF(co), there is an equivalent 

schema  S'  of EF. 

[Proof] The action of S can be simulated by a nondeterministic Turing machine  Al in a 
symbolic manner. The actions of  JV-which stoppes can be enumelated
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Fig. 4.7 Program  SIMULATEJ

and the corresponding computation can be constructed. It is possible to construct a deter-

ministic Turing machine T which takes a natural number i as input and outputs the i-th 

computation. S'can be constructed using  T. Q.E.D. 
 Corollary  4.3(ADF(  )  =  EF) 

 [Proof]  It is evident from the two theorems.

Q.E.D.

5  DF,(00),DFarb(00)

The  it -gate is introduced instead of the arbiter. However, these two devices have the 

common property of the timing dependency, which means that the value of the output token 

depends on which token on two input arcs is inputted faster. The  it-gate seemes to be more 

useful than the arbiter since the  it-gate is controllable by the control token. As a matter of 
fact, we show the relation 

 DF,(00)DF  b(c0). 

Theorem  5.1(DF,(00)DFarb(00)):For each schema S of  DF  b(°°), there exists an equivalent 

schema S'of  DF,(00). 

[Proof] The arbiter of S can be simulated by the statements of  S' as depicted in the figure 5. 
1. In the figure, the part labeled with  g2 is a Boolean graph

Fig. 5.1 Arbiter (a) and it's simulator (b).
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Fig. 5.2 Output unit attached to the statements.

which realize a function described in the table 5.1. The part is always sencing the tokens on 

input arcs. When no token is there, the part instructs no action to the merge by sending F 

thru a. When there exist a token on  x1, the part instructs the merge to transfer the token to 

y by sending T to a and b. When there exists a token on  x2 and no token on  x1  , the merge 

transfers the token to y. 

 Strictly speaking, the simulator takes more time than the original arbiter. Therefore, it 

may be possible that the delay cansed by the simulator affect the actions on the S' and then 

yield the differnt result from S. To avoid this possibilty, we should make the actions of other 

statements as slow as the simulator. For this purpose, the output unit is provided to each 

statement. We prepare the central clock unit which prvoides clock tokens to each output 

unit and arbiter simulator. The clock unit outputs the clock token only when all of the reply 

tokens have returned from each arbiter simulators. The value of the clock token is T 

disregarding the value of reply tokens. The output unit transfers the input token to the 

output arc, when the clock unit is provided. However, if there is no token on the input arc 

when the clock token from the central clock token is provided, the unit does nothing. Thus 

each statement cannot act  faster than the arbiter simulator. Decider and operator can act 

faster than the original in a relative meaning. This makes no problem, however, because the 

schema yields the same result for any time function consistent with the interpretaion. 

                                                                                        Q.E.D.

Table 5.1 The function realized by  g2.

Pa P2 a
b

F

F
T

T

F
T

F

T

F

T

T

T

F

F

T

T

F

F

F
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6 Conclusions

To answer the problem whether both of arbiter and recursive procedure are necessary for 

ADF to become equivalent to EF, it is necessary to investigate the expressive power of the 

classes which have single device. Further, it is also important to distinguish between the case 

that an arc can hold arbitrary number of tokens and the case that at most one token can 

exist on an arc. Until now, the expressive powers of the classes ADF(1),  DF,(co),  DF  b(1), 

RDF(co), RDF(1),  DF(co), and  Dfi(l) are investigated in comparison with the classes EF, EFd 

and P. However, the expressive powers of the class  ADF(co) and  DFarb(00) has not been 

investigated. In this paper, we have shown the class  ADF(co) also is equivalent to EF. As to 

the class DFarb(00), it was difficult to establish the proper inclusion relation between the 

class and  DFarb(1). Instead of the class, we have introduced the class  DF,r(co). The class 

 DF,(co) occupies a important position in the whole inclusion relations. Though the class 

 DFarb(00) takes rather a miner role in the whole inclusion relations, we are intersted in 

where the class shoud be located. In this paper, we have also shown the relation  DF7,(00) 

 DF,b(c0). It is not clear, however, whether the relation is proper or not. It is evident the 

relation  DFarb(c0)--DF(o0) is satisfied. Therefore, if the inclusion relation between  DFarb 

 (00) and  DFarb(1)is established, some proper inclusion relations be induced. Thus the 

problem, however, is an open problem for the present.
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