# The Minimum-weight k-Ideal Problem on a Directed Tree Poset and Its Polyhedron

## **Toshio Nemoto**

#### Abstract

Suppose we are given a poset(partially ordered set)  $\mathcal{P}=(V, \leq)$ , a real-valued weight w(v) associated with each element  $v \in V$  and a positive integer  $\kappa$ . We consider the problem which asks to find an ideal of size  $\kappa$  of  $\mathcal{P}$ such that the sum of the weights of the elements of this ideal is the minimum for all ideals that can be constructed from  $\mathcal{P}$ . We call this problem the minimum-weight  $\kappa$ -ideal problem. In this paper we explore a further possibility for a solvable case of this problem because it has been proven that this problem is  $\mathcal{NP}$ -hard even if the Hasse diagram representing a given poset is a bipartite graph. We obtain two new results. First, we describe an  $O(\kappa^2 n)$  algorithm on the special poset whose Hasse diagram is a directed tree, which is called a directed tree poset. Here n is the cardinality of the underlying set of the given poset. This outperforms an  $O(n^4)$  algorithm that is the best previously known. Secondly, we show a characteristic of the polyhedron obtained from the LPrelaxation of the  $\kappa$ -ideal problem on a directed tree poset. This is the first step to solve the other type  $\kappa$ -ideal problems from the LP-relaxation technique.

#### 1. Introduction

A binary relation  $\leq$  on a set V is called a *partial order* if it satisfies the following three conditions:  $\forall v \in V: v \leq v$  (Reflexivity),  $v \leq w, w \leq v \Rightarrow v = w$ (Antisymmetry),  $u \leq v, v \leq w \Rightarrow u \leq w$ (Transitivity). If  $u \leq v$  and  $u \neq v$ , we write u < v. We call the pair  $(V, \leq)$  a *partially ordered set* or a *poset* for short. A poset  $\mathcal{P}=(V, \leq)$  is usually represented by a (directed) graph  $G(\mathcal{P})=(V, A(\mathcal{P}))$  which is called the *Hasse diagram*, where  $A(\mathcal{P})=\{(u, v) \mid u, v \in V, u < v \text{ and there exists no element <math>v$  such that  $u < v < v\}$ . For a poset  $\mathcal{P}=(V, \leq)$  a subset *I* of *V* is called an *ideal* of P if  $u \leq v \in I$  always implies  $u \in I$ . Posets and iedals play a fundamental and essential role in the systems represented by a directed graph or a network. Therefore, they lie in numerous application settings and in many forms (see, e. g., [1], [6], [7]).

Suppose we are given a poset  $\mathcal{P}=(V, \leq)$ , a real-valued weight w(v) associated with each element  $v \in V$  and a positive integer  $\kappa$ . Then the minimum-weight cardinality-restricted ideal problem (of size  $\kappa$ ) or the minimum-weight k-ideal problem discussed in this paper is formulated as follows:

| <b>Ρ</b> <sub>κ</sub> : | $\text{Minimize} \sum_{v \in I} w(v)$         |  | (1.1a) |
|-------------------------|-----------------------------------------------|--|--------|
|                         | subject to $I \in \mathcal{I}(\mathcal{P})$ , |  | (1.1b) |
|                         | $ I  = \kappa$ ,                              |  | (1.1c) |

-265-

where  $\mathcal{I}(\mathcal{P})$  is the set of all the ideal of  $\mathcal{P}$ . The optimization problem on the ideal is valuable because many application in real-life are formalized as the ideal problem such as the above problem. Therefore, various types of this class of problems have been well researched, and Problem  $P_{\kappa}$  is known to be  $\mathcal{NP}$ -hard to the size of the Hasse deagram  $G(\mathcal{P})$  representing a given poset  $\mathcal{P}$  (see[4] for the concept of  $\mathcal{NP}$ -hard) even if the Hasse diagram  $G(\mathcal{P})$  is a bipartite graph (see[3] for basic treminology on the graph theory). This proposition drives us to the question on which families of posets we can solve Problem  $P_{\kappa}$  in polynomial time.

A study on this question was recently made by Faigle and Kern [2], and it revealed that we can solve Problem  $P_{\kappa}$  in  $O(n^4)$  on the special poset whose Hasse diagram is a directed tree. We call such a poset a *directed tree poset*. Essentially more general classes of posets having a polynomial time algorithm for this problem have not been found yet. It still remains to be done.

In this paper we focus on Problem  $P_{\kappa}$  on a directed tree poset. First, we propose a simple implementation of the  $O(n^4)$  algorithm for Problem  $P_{\kappa}$  on a directed tree poset proposed by Faigle and Kern[2], and reduce its complexity to  $O(\kappa^2 n)$ . The main cause of improvement is to transform the directed tree poset into an auxiliary binary tree. It leads to a simple computation and a strict estimation of the time complexity. Secondly, we show characteristics of the polyhedron obtained from the LP-relaxation of the  $\kappa$ -ideal problem on a directed tree poset. This result is the first step to solve the other type  $\kappa$ -ideal problems from the LP-relaxation technique. Each of the results has been developed from that in [2].

#### 2. An Improved Algorithm

In this section we propose an  $O(\kappa^2 n)$  improved algorithm for the minimum-weight  $\kappa$ -ideal problem( $P_{\kappa}$ ) on a directed tree poset  $\mathcal{T} = (V, \preceq)$  with root  $v_1$ . The essential behavior of the improved algorithm is the same as that of the algorithm proposed by [2]: For the Hasse diagram  $G(\mathcal{T}) = (V, A(\mathcal{T}))$  of  $\mathcal{T}$ , starting with the leaves of  $G(\mathcal{T})$ , we successively move down to the root by computing the optimal value for Problem  $P_t$  ( $0 \le t \le \min\{|V(v)|, \kappa\}$ ) on the directed subtree with root v of  $G(\mathcal{T})$ . Here,

 $V(v) = \{u \mid \text{ there is the path from } u \text{ to } v \text{ in } G(\mathcal{T})\}.$  (2.1)

The original algorithm [2] takes  $O(n^3)$  to compute the optimal value at a vertex from the values for its children if the number of them is more than 2. However, we improved the time complexity to do it to  $O(\kappa^2)$  by transforming from G(T) into an auxiliary binary tree, which is a binary directed tree, i. e., the number of children of any vertex is at most 2, and from whose directed subtree we can retrieve the ideal of T easily.

First, for the Hasse diagram  $G(\mathcal{T}) = (V, A(\mathcal{T}))$  of  $\mathcal{T}$ , we construct a directed tree  $\tilde{G}(\mathcal{T}) = (\tilde{V}, \tilde{A}(\mathcal{T}))$  by the following steps:

Step 1 : Put  $\tilde{V} = V$  and  $\tilde{A}(T) = A(T)$ .

Step 2 : Repeat the following(\*) until  $\{v \in \tilde{V} \mid \text{the number of } v \text{'s children is more than } 2\} = \emptyset$ .

(\*) Find a vertex  $v \in \tilde{V}$  such that the number of v's children is more than 2 and choose its two children  $u_1, u_2$ . Add a dummy vertex  $\tilde{v}$  into  $\tilde{G}(\mathcal{T})$  such that its parent is v and its two child are  $u_1$  and  $u_2$ . That is, put  $\tilde{V} := \tilde{V} \cup \{\tilde{v}\}$  and  $\tilde{A}(\mathcal{T}) := (\tilde{A}(\mathcal{T}) - \{(u, v)\}) \cup \{(u_1, \tilde{v}), (u_2, \tilde{v}), (\tilde{v}, v)\}$ .

We call  $\tilde{G}(\mathcal{T}) = (\tilde{V}, \tilde{A}(\mathcal{T}))$  obtrained by the above steps an *auxiliary tree* for  $\mathcal{T}$ . See Figure 1 for an example of the auxiliary tree  $\tilde{G}(\mathcal{T})$  for a directed tree poset  $\mathcal{T}$ .





We remark that the auxiliary tree  $\tilde{G}(\mathcal{T})$  has the following features:

- (1) The root  $v_1$  and leaves are not dummy vertex;
- (2) For a directed subtree  $\hat{T} = (\hat{T}, \hat{A})$  with root  $v_1$  of  $\tilde{G}(T)$  and the set  $V^d$  of all the dummy vertices in  $\hat{V}$ , the set  $\hat{V} V^d$  is an ideal of T;
- (3)  $|\hat{V}| \leq 2 |V| 3$  and  $|\tilde{A}(T)| \leq 2 |V| 4$ .

#### Algorithm

Input : A directed tree poset  $\mathcal{T} = (V, \leq)$  withroot  $v_1$  and a positive integer  $\kappa$ .

**Output :** The solution of Problem  $P_{\kappa}$  on T.

**Step 1** : Construct the auxiliary tree  $\tilde{G}(\mathcal{T}) = (\tilde{V}, \tilde{A}(\mathcal{T}))$  for  $\mathcal{T}$ .

Step 2 : Repeat the following(\*) for  $v_i$  in topological order.

(\*) Compute  $W(t, v_i)$  ( $0 \le t \le \min\{|\tilde{V}(v_i)|, \kappa\}$ ) according to the above(i), (ii) and (ii). Step 3 : The current  $W(\kappa, v_1)$  is the optimal solution.

(End)

Figure 2 : The algorithm for determining  $W(\kappa, v_1)$ .

-267-

Secondly, we sketch an implementation using  $\tilde{G}(\mathcal{T})$ . For a vertex  $v_i \in \tilde{V}$   $\hat{T}(v_i) = (\hat{V}(v_i), \hat{A}(v_i))$  stands for a directed subtree with root  $v_i$  of  $\tilde{G}(\mathcal{T})$  and  $\hat{V}^{d}(v_i)$  the set of all the dummy vertices in  $\hat{V}(v_i)$ . Furthermore, let us define

$$W(t, v_i) = \min \left\{ \sum_{v \in \hat{V}(v_i)} w(v) \; \middle| \; | \; \hat{V}(v_i) - \hat{V}^d(v_i) | = t \right\} \; (0 \le t \le \min \{ | \tilde{V}(v_i) |, \kappa \} ).$$
(2.2)

We can compute  $W(t, v_i)$  from the values obtained for at most two children of  $v_i$ , which is denoted by  $u_{v_i}^1$  and  $u_{v_i}^2$ , as follows:

(i) For a leaf  $v_i$  of T

$$W(0,v_i) = 0,$$
 (2.3a)  
 $W(1,v_i) = w(v_i).$  (2.3b)

(ii) For a dummy inner vertex  $v_i$ 

$$W(t,v_i) = \min \{ W(t',u_v^1) + W(t'',u_v^2) \mid t' + t'' = t \} (0 \le t \le \min \{ |\tilde{V}(v_i)|, \kappa \} ) .$$
(2.4)

(iii) For a non-dummy inner vertex  $v_i$ 

$$W(0,v_i) = 0,$$

$$W(t,v_i) = w(v_i) + \min \{W(t',u_{v_i}^1) + W(t'',u_{v_i}^2) \mid t' + t'' = t - 1\}$$

$$(1 \le t \le \min \{|\tilde{V}(v_i)|, \kappa\}).$$
(2.5b)

In the case when an inner vertex  $v_i$  has only one child  $u_{v_i}^1$ , replace min  $\{W(t', u_{v_i}^1) + W(t'', u_{v_i}^2) | t'+t''=t\}$ in (2.4) by  $W(t, u_{v_i}^1)$ , and min  $\{W(t', u_{v_i}^1) + W(t'', u_{v_i}^2) | t'+t''=t-1\}$  in (2.5b) by  $W(t-1, u_{v_i}^1)$ .

The objective function value of an optimal solution of Problem  $P_{\kappa}$  on  $\mathcal{T}$  is given by  $W(\kappa, v_1)$  due to the definition. The above computation method of  $W(t, v_i)$  suggests the "from leaves to root" algorithm for determining  $W(\kappa, v_1)$  as shown in Figure 2.

Also see Figure 3 for illustrating the algorithm in the case of  $\kappa = 4$  on the directed tree poset given in Figure 1. We have  $W(4, v_1) = 7$  and the corresponding set  $\{v_1, v_4, \tilde{v}_4, v_7, v_8\}$ ; hence, the minimum-wight ideal of size 4 of T is  $\{v_1, v_4, v_7, v_8\}$ .

-268-



Figure 3 : Illustrating the algorithm in the case of  $\kappa$ =4 on the derected tree poset T shown in Figure 1.

#### **Theorem 2.1** : The algorithm shown in Figure 2 computes $W(\kappa, v_1)$ in $O(\kappa^2 n)$ time.

(Proof) The correctness of the algorithm is clear from the above discussion. We consider the time complexity for the algorithm. Constructing the auxiliary tree  $\tilde{G}(\mathcal{T}) = (\tilde{V}, \tilde{A}(\mathcal{T}))$  takes O(n) time. And we need  $O(\kappa^2)$  time to compute  $W(t, v_i)(0 \le t \le \min \{|\tilde{V}(v_i)|, \kappa\})$  at a vertex  $v_i$ . Because, in an iteration fo Step 2, the number of all the pairs of two numbers such that one is chose from  $\{0, 1, \dots, \min \{|\tilde{V}(u_{v_i}^1)|, \kappa\}\}$  and the other is chosen from  $\{0, 1, \dots, \min \{|\tilde{V}(u_{v_i}^2)|, \kappa\}\}$  is at most  $(\kappa+1)^2$ , and the other computations take a constant time.

The number of iterations of Step 2 is  $|\tilde{V}|$  times. Notice that  $|\tilde{V}| \leq 2 |V| - 3$ . Hence, the overall bound is  $O(\kappa^2 n)$ .

If an optimal ideal is required, then the additional data should be held all the contributing vertices in computing  $W(t, v_i)$ .

### 3. A Characteristic of the Polyhedron

In this section we show a property of the polyhedron obtained from the LP-relaxation of the cardinalityrestricted ideal problem  $P_{\kappa}$  on a directed tree poset.

The LP-relaxation of Problem  $P_{\kappa}$  on a general poset is given as follows:

 $\mathbf{P}_{\kappa}^{\mathrm{LP}}$ : Minimize wx

subject to  $D^t x \leq \mathbf{0}_m$ , (3.1b)

$$\sum_{v \in V} x(v) = \kappa, \tag{3.1c}$$

$$\mathbf{0}_n \leq \mathbf{x} \leq \mathbf{1}_n, \tag{3.1d}$$

where  $D^t$  denotes the transposition of the incidence matrix D of the Hasse diagram representing a given poset, and  $O_n(1_n)$  stands for the all-0 (1) column vector of size n.

It is well known the following fundamental relationship between the non-cardinality-restricted ideal problems which is formulated as min  $\{\Sigma_{\upsilon \in I} w(\upsilon) \mid I \in \mathcal{I}(\mathcal{P})\}\$  and its LP-relaxation, denoted by P<sup>LP</sup>, whose constraint system do not have only (3.1c) in the above  $P_{\kappa}^{LP}$ .

**Proposition 3.1**(see [8]) : The polyhedron  $Q = \{x \mid D^t x \leq \mathbf{0}_m, \mathbf{0}_n \leq x \leq \mathbf{1}_n\}$  is integral, i. e., min $\{wx \mid x \in Q\}$  is attained by an integral vector for each w for which the minimum is finite.  $\Box$ 

See Figure 4 for an example of a polyhedron Q defined in Proposition 3.1.

**Propositon 3.2**(see [8]) : An integral optimal solution of Problem  $P^{LP}$  is an optimal solution of the minimum-weight non-cardinality-restricted ideal problem.

Due to Proposition 3.2 we can obtain an optimal ideal for the minimum-weight non-cardinality-restricted ideal problem by applying methods for the linear programming problem such as the simplex method.

However, the additional constraint,  $\Sigma_{v \in \mathcal{V}} x(v) = \kappa$ , breaks the above property, i. e., the polyhedron

$$Q_{\kappa} = \left\{ \mathbf{x} \in Q \mid \sum_{v \in V} \mathbf{x}(v) = \kappa \right\}$$
(3.2)

is not integral, where the set Q is defined in Proposition 3.1. (See Figure 5 for an example of such polyhedrons.) Therefore, we get difficult in solving the  $\kappa$ -ideal problem from LP-relaxation technique by this observation even if a given poset is a directed tree poset. Nevertheless, we can see the particular structure of the polyhedron  $Q_{\kappa}$  on a directed tree poset.

**Lemma 3.3** : For a directed tree poset  $T = (V, \leq)$  with root  $v_1$  and a positive integer  $\kappa$  with  $\kappa \leq |V|$ , consider the polyhedron  $Q_{\kappa}$  defined by (3.2). For a vertex  $\hat{x}$  of  $Q_{\kappa}$  let us define sets

$$V_1 = \{ v \in V \mid \hat{x}(v) = 1 \}$$

(3.3)

(3.1a)





and

$$V_2 = \{ v \in V \mid 0 < \hat{x}(v) < 1 \}.$$
(3.4)

Then, for all  $v \in V_2 \hat{x}(v)$  has the same constant value. Indeed, for all  $v \in V_2$ 

$$\hat{x}(v) = \frac{\kappa - |V_1|}{|V_2|}.$$
(3.5)

(Proof) If  $\hat{x}$  is a vertex of  $Q_k$ , then it is determined by *n* linearly independent equations from the systm given by  $(3.1b) \sim (3.1d)$  (see[8]), which are expressed as follows:

$$D_0^t \hat{\boldsymbol{x}} = \boldsymbol{0}_{|V_2|-1} \text{ for submatrix } D_0 \text{ of } D, \tag{3.6a}$$

$$\mathbf{1}_n^t \hat{\boldsymbol{x}} = \kappa, \tag{3.6b}$$

$$\hat{\boldsymbol{x}}(\boldsymbol{v}) = \mathbf{1} (\boldsymbol{v} \in V_1), \tag{3.6c}$$

$$\hat{\boldsymbol{x}}(\boldsymbol{v}) = \mathbf{0} (\boldsymbol{v} \in V_3), \tag{3.6d}$$

-271-



$$Q_{\kappa} = \{ \mathbf{x} \in Q \mid x(v_1) + x(v_2) + x(v_3) = \kappa \}$$

Figure 5 : The Polyhedron  $Q_{\kappa}(\kappa=1, 2)$  for the directed tree poset T shown in Figure 4.

where  $V_3 \equiv V - (V_1 \cup V_2) = \{v \in V \mid \hat{x}(v) = 0\}$ . Notice that  $D_0^t$  can be expressed as

$$D_0^t = \begin{pmatrix} D_{V_1}^t & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & D_{V_2}^t & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & D_{V_3}^t \end{pmatrix},$$
(3.7)

where  $D_{V_i}(i=1, 2, 3)$  denotes the incidence matrix of the subgraph of the Hasse diagram  $G(\mathcal{T})$  of the given directed tree poset  $\mathcal{T}$  induced by  $V_i$ , respectively. By deleting the evident factor from the above *n* linearly independent equations we obtain the following equations with respect to  $\hat{x}(V_2) = (x(v) | v \in V_2)$ :

$$D_{V_2}^t \hat{\mathbf{x}}(V_2) = \mathbf{0}_{|V_2|-1}, \tag{3.8a}$$

$$\mathbf{1}_{|V_2|}^t \hat{\mathbf{x}}(V_2) = \kappa - |V_1|.$$
(3.8b)

These are linearly independent, that is,

$$\operatorname{rank}\begin{pmatrix} D_{V_2}^t\\ \mathbf{1}_{|V_2|}^t \end{pmatrix} = |V_2|.$$
(3.9)

Therefore,

$$\hat{\mathbf{x}}(V_2) = \begin{pmatrix} D_{V_2}^t \\ \mathbf{1}_{|V_2|}^{t} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{0}_{|V_2|-1} \\ \kappa - |V_1| \end{pmatrix} = \frac{1}{|V_2|} \begin{pmatrix} \ast & \frac{1}{1} \\ 1 \end{pmatrix} \begin{pmatrix} \mathbf{0}_{|V_2|-1} \\ \kappa - |V_1| \end{pmatrix} = \frac{\kappa - |V_1|}{|V_2|} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$
(3.10)

-272-

We have thus proved the lemma.

**Lemma 3.4** : For the set  $V_1$  and  $V_2$  defined in Lemma 3.3 let us define subgraphs  $T_1 = (V_1, A_{V_1})$ and  $T_2 = (V_2, A_{V_2})$  of the Hasse diagram G(T) of T induced by  $V_1$  and  $V_2$ , respectively. Then  $T_1$ and  $T_2$  are the directed subtrees of G(T) satisfying the following three conditions:

- (i) The root of  $T_1$  is  $v_1$ .
- (ii) The parent  $\hat{v}$  of the root v' of  $T_2$  is in  $V_1$  if  $V_1 \neq \emptyset$ ; otherwise  $v'=v_1$ .
- (iii)  $|V_1| + |V_2| \ge \kappa$  and  $V_1 \cap V_2 = \emptyset$ .

(Proof) It is clear that the condition(iii) holds true.  $T_1$  is a directed subtree with root  $v_1$  since the set  $V_1$  forms an ideal of  $\mathcal{T}$  and  $v_1$  is the unique minimal element of  $\mathcal{T}$ . From (3.9) we have

$$\operatorname{rank} D_{V_2}^t = |V_2| - 1. \tag{3.11}$$

This implies that  $T_2$  forms a tree (see [5]), and a subtree  $T_2$  of  $G(\mathcal{T})$  becomes a directed tree. For the root v' of  $T_2$  and the parent  $\hat{v}$  of v', the constraint (3.1b) and the fact that  $\hat{v} \notin V_2$  impose an inequality  $x(\hat{v}) > x(v')$ . By virtue of Lemma 3.3 the non-integral value of  $\hat{x}$  is unique. Hence,  $x(\hat{v})$  must be 1, i. e.,  $\hat{v} \in V_1$ . If  $V_1 = 0$ , then  $v' = v_1$  since the set  $V_2$  must form an ideal of  $\mathcal{T}$  instead of  $V_1$ .

**Lemma 3.5** : Consider two directed subtrees  $T_1 = (V_1, A_{V_1})$  and  $T_2 = (V_2, A_{V_2})$  of the Hasse diagram G(T) of a directed tree poset  $T = (V, \leq)$  with root  $v_1$  satisfying the conditions shown in Lemma 3.4 for a positive integer  $\kappa$  with  $\kappa \leq |V|$ . Let us define  $\hat{x}$  by

$$\boldsymbol{\hat{x}}(\boldsymbol{\upsilon}) = \begin{cases} 1 & (\text{if } \boldsymbol{\upsilon} \in V_1) \\ \frac{\kappa - |V_1|}{|V_2|} & (\text{if } \boldsymbol{\upsilon} \in V_2) \\ 0 & (\text{otherwise}) . \end{cases}$$
(3.12)

(3.13)

(3.14)

Then,  $\hat{\mathbf{x}}$  is a vertex of the polyhedron  $Q_{\kappa}$ .

(Proof) We can see that  $\hat{x} \in Q_{\kappa}$  by substituting  $\hat{x}$  into(3.1b) $\sim$ (3.1d). Now, we show that  $\hat{x}$  is a vertex of  $Q_{\kappa}$ . Some active inequalities for  $\hat{x}$  are listed below. (Here, we say an inequality  $a^{t}x \leq b$  is active for  $\hat{x}$  in a given system if  $a^{t}\hat{x} = b$ .)

 $\begin{pmatrix} D_{V_1}^t & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & D_{V_2}^t & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & D_{V_3}^t \\ \mathbf{1}^{\dots}\mathbf{1} & \mathbf{1}^{\dots}\mathbf{1} & \mathbf{1}^{\dots}\mathbf{1} \\ E_{|V_1|} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & E_{|V_3|} \end{pmatrix} \mathbf{\hat{x}} = \begin{pmatrix} \mathbf{0}\mathbf{n} \\ \mathbf{\kappa} \\ \mathbf{1}_{|V_1|} \\ \mathbf{0}_{|V_3|} \end{pmatrix}$ 

The left side matrix of (3.13) is denoted by D'. Then, we have

$$\operatorname{rank} D' \ge |V_1| + |V_2| + |V_3| = n$$

since each of the first and the third column of D' contributes at least  $|V_1|$  and  $|V_3|$  to the rank of D' and we have

$$\operatorname{rank}\begin{pmatrix} D_{V_2}^t\\ 1\cdots 1 \end{pmatrix} = |V_2| \tag{3.15}$$

(see [5]). On the contrary, it is clear that rank  $D' \leq n$ . Consequently, we have rank D' = n. It is known that the matrix D' has full column rank if and only if  $\hat{x}$  is a vertex of  $Q_{\kappa}$ , thereby completing the proof. (See [5], [8], [9] for a full account of the properties of the polyhedron.)

Combining Lemma 3.4 with Lemma 3.5, we have the theorem below.

**Theorem 3.6** : The correspondence (3.12) gives a one-to-one and onto mapping from the set of all the pairs of the subtrees  $T_1$  and  $T_2$  of G(T) satisfying the conditions in Lemma 3.4 to the set of all the vertices of  $Q\kappa$ .

We can characterize the structure of  $Q_{\kappa}$  for a directed tree poset. However, no result sheds some light on it for more general posets. Besides, it remains an unsettled question how to delete the non-integral vertex from  $Q_{\kappa}$ . The LP-relaxation technique may not be suit for the cardinality-restricted ideal problems such as Problem  $P_{\kappa}$ . Much still remains to be done.

#### References

- [1] R.K.Ahuja, T.L.Magnanti and J.B.Orlin : Network Flows : Theory, Algorithms, and Applications (Prentice Hall, New York, 1993).
- [2] U.Faigle and W.Kern : Computational complexity of some maximum average weight problems with precedence constraints. *Operations Research* **42** (1994) 688-693.
- [3] S.Fujishige : Submodular Function and Optimization (Annals of Discrete Mathematics, vol.47, North-Holland, Amsterdam, 1991).
- [4] M.R.Garey and D.S.Johnson : Computers and Intractability : A Guide to the Theory of NP-Completeness (W.H.Freeman and company, San Francisco, 1979).
- [5] G.L.Nemhauser and L.A.Wolsey : Integer and Combinatorial Optimization (Wiley, New York, 1988).
- [6] J.C.Picard : Maximal closure of a graph and applications to combinatorial problems. *Management Science* 22 (1976) 1268-1272.
- [7] J.C.Picard and M.Queyranne : Selected applications on minimum cuts in networks. Information Systems and Operational Research 20 (1982) 394-422.
- [8] A.Schrijver: Theory of Linear and Integer Programming (John Wiley and Sons, Chichester, 1986).
- [9] J.Stoer and C.Witzgall : Convexity and Optimization in Finite Dimensions I (Springer-Verlag, Berlin, 1970)