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Abstract

 Suppose we are given a poset(partially ordered set)  P=  (V, ), a real-valued weight w(v) associated with 

each element v  E V and a positive integer  K. We consider the problem which asks to find an ideal of size  K of P 

such that the sum of the weights of the elements of this ideal is the minimum for all ideals that can be con-

structed from P. We call this problem the minimum-weight  x-ideal problem. In this paper we explore a further 

possibility for a solvable case of this problem because it has been proven that this problem is  NP-hard even if 

the Hasse diagram representing a given poset is a bipartite graph. We obtain two new results. First, we describe 

an  0(K2n) algorithm on the special poset whose Hasse diagram is a directed  tree, which is called a directed tree 

poset. Here n is the cardinality of the underlying set of the given poset. This outperforms an 0(n4) algorithm 

that is the best previously known. Secondly, we show a characteristic of the polyhedron obtained from the LP-

relaxation of the K-ideal problem on a directed tree poset. This is the first step to solve the other type K-ideal 

problems from the LP-relaxation technique.

 1. Introduction

 A binary relation on a set  V  is called  a  partial order if it satisfies the following three  conditions  :  Vve 

    v(Reflexivity), w, v  >  v  =  w  (Antisymmetry), v, w  >  u w(Transitivity). If  u v and 

 u*v, we write  u-< v. We call the pair  (V, )  a  partially ordered set or  a  poset for short. A poset  P=  (  V, ) 

is usually represented by a (directed) graph  G(P)=  (V, A(P)) which is called the Hasse diagram, where 

 A(P)= 1(u, v)  I u,  v  E V,  u-< v and there exists no element  '0 such that u-<  fr<  v1 . For a poset  P=  (V, ) a 

subset  /of  V  is called an ideal of P if  v  E  /always implies u  E  /. Posets and iedals play a fundamental and 

essential role in the systems represented by a directed graph or a network. Therefore, they lie in numerous 

application settings and in many forms (see, e.  g.  , [1], [6], [7]). 

 Suppose we are given a poset  P  =  ( V, ), a real-valued weight  w(v) associated with each element  v  e  V  and 

a positive integer  K. Then the minimum-weight  cardinality-restricted ideal problem (of size  ic) or the 

minimum-weight k-ideal problem discussed in this paper is formulated as follows: 

   PK:  Minimize  E  w(v)  (1.1a) 
                               vE/

subject  to  /  e  i(P),  (1.1b)

 

I  il=K,  (1.1c)
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where  1(P) is the set of all the ideal of P. The optimization problem on the ideal is valuable because many 

application in real-life are formalized as the ideal problem such as the above problem. Therefore, various types 

of this class of problems have been well researched, and Problem  Pt, is known to be NP-hard to the size of the 

Hasse deagram G(P) representing a given poset P  (see  [4] for the concept of  NP-hard) even if the Hasse 
diagram G(P) is a bipartite graph  (see  [3] for basic  terminology on the graph theory). This proposition drives 

us to the question on which families of posets we can solve Problem  PK in polynomial time. 

 A study on this question was recently made by Faigle and Kern  [2]  , and it revealed that we can solve Problem 

 P,, in  0(n4) on the special poset whose Hasse diagram is a directed tree. We call such a poset a directed tree 

poset. Essentially more general classes of posets having a polynomial time algorithm for this problem have not 
been found yet. It  still  remains to be done. 

 In this paper we focus on Problem  Pi, on a directed tree poset. First,  we  propose a simple implementation of 

the  0(n4) algorithm  for. Problem  13,,  on a directed tree poset proposed by Faigle and Kern  [2]  , and reduce its 

complexity to  0(K2n.). The main cause of improvement is to transform the directed tree poset into an auxiliary 

binary tree. It leads to a simple computation and a strict estimation of the time complexity. Secondly, we show 

characteristics of the polyhedron obtained from the LP-relaxation of  the  K-ideal problem on a directed tree 

poset. This result is the first step to solve the other type  K-ideal problems from the LP-relaxation technique. 
Each of the results has been developed from that in  [2]  .

2. An Improved Algorithm

 In this section we propose an  0(K2n) improved algorithm for the minimum-weight  K-ideal  problem(PK) on a 

directed tree poset  T  =  (V, ) with root  yl. The essential behavior of the improved algorithm is the same as that of 

the algorithm proposed  by  [2]  : For the Hasse diagram  G(T)=  (V, A(T)) of T, starting with the leaves of G(T), we 

successively move down to the root by computing the optimal value  for  Problem  Pt  (O  S  tmin  I  I  V(v)  ,  K}) on the 

directed subtree with root v of G(T). Here,

 V(v)=  lu  I there is the  path  from  u  to  y in  G  (T)  }. (2.1)

The original algorithm [2] takes  0(n3) to compute the optimal value at a vertex from the values for its children 

if the number of them is more than 2. However, we improved the time complexity to do it to  0(K2) by  trans-

forming from G(T) into an auxiliary binary tree, which is a binary directed tree, i. e., the number of children of 

any vertex is at most 2, and from whose directed subtree we can retrieve the ideal of T easily. 

 First, for the Hasse diagram  G(T)=  (V,  A  (T))  of  T, we construct a directed tree  G  (T)-=  (V,  A  (T)) by the 

following  steps

Step  1  : Put  V=  V  and A(T)=A(T). 

Step 2 : Repeat the  following(*) until  tveci I the number of  v's children is more than  21  =0.  

(  *)  Find a vertex ve-V such that the number of v's children is more than 2 and choose 
         its two children  u1, u2. Add a dummy vertex  13 into  O(T) such that its parent is v and
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its two child are  ui and  722. That is, put V 

 {(ui, (u2,  1)), v)}

 and  A(T):  = (A(T)  —  {(u,  v)}  )  U

We call  0(T)=  (7,  A(T)) obtrained by the above steps an auxiliary tree  for  T. See Figure 1 for an example 

of the auxiliary tree  0(T) for a directed tree poset T.

 Vg 

-

(a) The Hasse diagram  G  (T)  . (b) The auxiliary  tree( (T) for  G(T).

                Figure 1 : An example for a directed tree poset T. 

We remark that the auxiliary tree  6(7-) has the following  features: 

(1) The root  v1 and leaves are not dummy  vertex; 

(2) For a directed subtree  i'=  (i',  A) with root  v1 of  0(T) and the set Vd of all the dummy vertices in  V, the 
   set  V—  Vd is an ideal of  T; 

(3)  IVI  2  I  VI-3 and  I  A(T)  I  2IVI  —4.

Algorithm 

 Input : A directed tree poset T=(V, withroot v1 and a positive integer K. 

 Output  :  The solution of Problem PK on T. 

 Step  1  : Construct the auxiliary tree  O(T)=(17  ,  A  (T)) for  T. 

 Step 2  : Repeat the  following(*) for  vi in topological order. 

       (*) Compute W(t,  vi)  (0.61  Amin  {  I  ,  ) according to the above(  i  ),  (ii 
 Step 3 : The current  W(K, v1) is the optimal solution. 

 (End)

Figure 2 : The algorithm for determining W(K, v1).

) and  (iii).
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 Secondly, we sketch an implementation using O(T). For a vertex  vi E V  t(vi)=--  (V(vi),  Mvi)) stands for a 
directed subtree with root  vi of  (T) and  'Vd(vi) the set of all the dummy vertices in  fT(vi). Furthermore, let us 

define

 W(t,  vi)  =min  w  (  v  ) 
 ve“vi)

 V  (vi) (vi)  I=  t    _min I I -1-7(vi)  I,  KI  ). (2.2)

We can compute W(t,  vi) from the values obtained for at most two children of  vi, 

 u?„,  as  follows:

which is denoted by and

 (  i  ) For a leaf  vi  of  T

 W  (  o,vi)  =  o, 

 w  (  w  (vi)

(2.3a) 

(2.3b)

(ii) For a dummy inner vertex  vi

 W(t,v1)=  min  I  W(e,ttl,)  W(t",u3.)  t'  t"  =  t  (vi) I, K I . (2.4)

(iii) For a non-dummy inner vertex  vi 

 W(0,vd=  0, 
 W(t,vd=w(vi)  +min  1W(t',/t.,t)+W(t",u)  I  t'd-til  =t—  1} 

 

I  V  (vi) I, K} ).

(2.5a)

(2.5b)

 In the case when an inner vertex  vi has only one child replace  min  IW(t',  W(t",  WO  I  t'±  t"  =t} 

in (2.4) by W(t,  WO, and  min  I W(t',  uLi)±  W(t",  t'  +t"  =t  —11 in (2.5b) by W(t —1,  WO. 

 The objective function value of an optimal solution of Problem  P, on T is given by  W(K, v1) due to the 

definition. The above computation method of W(t,  vi) suggests the "from leaves to root" algorithm for deter-

mining  W(K, v1) as shown in Figure 2. 

 Also see Figure 3 for illustrating the algorithm in the case  of  K=4 on the directed tree poset given in Figure 1. 

We have W(4,  vi)=7 and the corresponding set  Ivi,  V4,  '04,  7, v 8 } ;17 hence, the  minimum-wight ideal of size 4 

 of  T  is  V4, V7,  V81  •
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Figure 3  : Illustrating the algorithm in the case of ic=4 on the 

       derected tree poset T shown in Figure 1.

Theorem 2.1  : The algorithm shown in Figure 2 computes  W(K, v1) in  0(K2n) time.

(Proof) The correctness of the algorithm is clear from the above discussion. We consider the time complexity 
for the  algorithm. Constructing the auxiliary tree  G(T)=(V,  A(T)) takes 0(n)  time And we need 0(K2) time to 

compute W(t,  vi)(05t  __minII-V(vi) I,  K1) at a vertex  vi. Because, in an iteration fo Step 2, the number of all 

the pairs of two numbers such that one is chose  from10, 1,  min  111-7(4)  I,  K11 and the other is chosen from 

 10, 1,  mM119(u?,i)  I,  K1  1 is at most  (K± 1)2, and the other computations take a constant time. 
 The number of iterations of Step 2 is I V I times. Notice that I V I  5_2 I V I  —3. Hence, the overall bound 

is  O(K2n). ^

 If an optimal ideal is required, then the additional data should be held all the contributing vertices in comput-

ing W(t,  vi).

3. A Characteristic of the Polyhedron

 In this section we show a property of the polyhedron obtained from the LP-relaxation of the cardinality-

restricted ideal problem PK on a directed tree poset. 

 The LP-relaxation of Problem PK on a general poset is given as follows:
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 PKI-P  : Minimize wx  (3.1a) 

     subject to  Drx  5  Om,  (3.1b) 

 x(v)=K,  (3.1c) 
                                vEV 

      Onyx s in,  (3.1d) 

where Dt denotes the transposition of the incidence matrix D of the Hasse diagram representing a given poset, 

and  07,(1n) stands for the  all-0 (1)  column vector of size n. 

 It is well known the following fundamental relationship between the non-cardinality-restricted ideal prob-

lems which is formulated as  min  lEvEiw(v)  I  /E  i(P)l and its LP-relaxation, denoted by  PLP, whose constraint 

system do not have only  (3.1c) in the above  P.

Proposition  3.1(see  [8]) : The polyhedron  Q={x I  Dt.x._0,„,  0„.-ix1n} is integral, i. e., 

min{wx  I  x  Q} is attained by an integral  vector  for each  w  for which the minimum is finite.  111

See Figure 4 for an example of a polyhedron Q defined in Proposition 3.1.

Propositon 3.2(see  (8])  : An integral optimal solution of Problem  PLP is an optimal solution of 

the minimum-weight non-cardinality-restricted ideal  problem. ^

 Due to Proposition 3.2 we can obtain  an  optimal  ideal for the minimum-weight non-cardinality-restricted 

ideal problem by applying methods for the linear programming problem such as the simplex method. 

 However, the additional constraint,  EvEvx(v)=K, breaks the above property,  i.  e ., the polyhedron 

 QK-  xE  Q  1E       x(v) = K(3.2) 
 vEV 

is not integral, where the set Q is defined in Proposition 3.1. (See Figure 5 for an example of such polyhedrons.) 

Therefore, we get difficult in solving the K-ideal problem from LP-relaxation technique by this observation 

even if a given poset is a directed tree poset. Nevertheless, we can see the particular structure of the polyhedron 

QK on a directed tree poset.

Lemma 3.3  : For a directed tree poset  :.<_) with root  v1 and a positive integer K with  

IV  I  , consider the polyhedron  QK defined by  (3.2).  For  a vertex  I of  Q,, let us define sets

 v  lvEv  I  g  (v)  =i} (3.3)
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 V2  V3  ilk
ie? The  Polyhedron  Q 

                     x(vi)-1 1 0)( 
0,x5°            Q=.x= x(v2) ER3()                                         ._)                                 —1 0 1) 

    ( 

    v 1x(v3) 0_5_x(vi), x(v2),x(v3)5_1. 
   A  poset  T 

                       x(v3) 

         11_ A 

                              I 

    . .        . 1 ' 

       liril ..)---1.- x(v2) 
      AillihlL                                               ''' 

   1 1 

 X(Vi)                         P
olyhedron Q 

                        •  :  the  vertices  of  Q

1

Polyhedron

              Figure  4  : An example of a poset T and its polyhedron Q. 

 and 

 V2-=IvEVIO<I(v)<11. (3.4) 

 Then,  for all  Ve  V2  x(v) has the same constant value.  Indeed,  for all  Ve  V2 

             K-IV 11  I(
v)=  IV

21(3.5) 

                                                                                  • (Proof) If  I is a vertex of  (2,„ then it is determined by n linearly independent equations from the  systrn given by 

 (3.1b)—  (3.1d)  (see  [8]  ), which are expressed as follows: 

 D6  i=o1v21_1 for  submatrix  Do of  D,  (3.6a) 

 (3.6b) 

 .Z(v)--=  1  (v  E  171),  (3.6c) 

 (v)=  0  (v  E  V3),  (3.6d)
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• : the vertices of Q 
  : the non-integral vertices of QK

 QK=  Ix  EQIx  (vi)  +x  (v2)  +x  (113) =ICI 

    Figure 5 : The Polyhedron  QK(K=1, 2) for the directed tree poset T shown in Figure 4. 

where  V3-=-.  V—(V1U  V2)=  I'VE V I  9c(v)=01. Notice that  DI, can be expressed as 

 /31,1  0  0 
 D6= 0  Diti2 0  , 

 ( 

   0 0 Dtv, -                                                                   (3.7) 

where  Dv,(i  =1, 2, 3) denotes the incidence matrix of the subgraph of the Hasse diagram G(T) of the given 

directed tree poset T induced by  Vi, respectively. By deleting the evident factor from the above n linearly 

independent equations we obtain the following equations with respect to  i(V2)=(x(v) I  v E  V2): 

  Di/21(172)=0(3.8a)                        Iv21-1, 

        1t(i,        ilv2lx\v2)     =K—IVil• (3.8b) 

 These are linearly independent, that is, 

     rank(D{12 )= IV I . 
  *212(3.9) 

 Therefore, 

 1072)  =  ( Df2 ) 1 (0 1v21— 1 1  * l)Olv 21-1 )_ K-11711 1             11V21 K—IV11) 1721 (K-1711 IV21.  (3.10) 

    We have thus proved the lemma.  ^
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Lemma 3.4  : For the set V1 and V2 defined in Lemma 3.3 let us define subgraphs  T1=(171,  Affil  ) 

and T2=(V2, Av2) of the Hasse diagram G(T) of T induced by V1 and  V2, respectively. Then T1 

and T2 are the directed subtrees of G(T) satisfying the following three conditions:

 

(  ) The root  of  Ti is  v1.  

(  ) The parent ikof the root v' of T2 is in V1  if  Vi  *Q; otherwise  v'=v1. 

 (iii)  IV1I+  I  V2  I  and  Vi  n  v2=0.

(Proof) It is clear that the condition(iii) holds true. T1 is a directed subtree with root  v1 since the set V1 forms an 

ideal  of  T and  vi is the unique minimal element  of  T. From (3.9) we have

 rankDIti2  =  11721  -1 (3.11)

This implies that T2 forms a tree (see  [5]  ), and a subtree T2  of G(T) becomes a directed tree. For the root v' of 

T2 and the parent  0 of v', the constraint  (3.1b) and the fact that  v  e V2 impose an inequality  x  (0)>x  (V). By 

virtue of Lemma 3.3 the non-integral value of  z is unique. Hence,  x(0) must be 1,  i. e.  ,  'OE Vi. If  V1  0, then 

 v'=vi since the set V2 must form an ideal  of  T instead of Vi. ^

Lemma  3.5  : Consider two directed subtrees Av1) and  T2=(V2, Av2) of the Hasse 

diagram G(T) of a directed tree poset  T=(V, ) with root v1 satisfying the conditions shown in 

Lemma 3.4 for a positive integer  lc with I V I . Let us define  I by

1(v) --=

1  (if  V  E  V1) 
K-111,1  
 Iv21  Of  V  E  V2) 

0 (otherwise) .

(3.12)

Then,  I is a vertex of the polyhedron  QK.

(Proof) We can see that  z  E  QK by substituting  I  into(3.1b)—  (3.1d). Now, we show that  z is a vertex of  QK. 

Some active inequalities for are listed below. (Here, we say an inequality  atx  5_b is active for  I in a given 

 system  if  at'i  =b.)

DIt7i 

 0 

 0 

 1•1 

 Eiv1i 

 0

0 

DIT2 

0 

 1•••1 

0 

 0

 0 

 0 

Diti3 

 PH. 

 0 

 EIV3I

On 

K 

 11v11 

 0  11731 (3.13)

The left side matrix of (3.13) is denoted by  D'. Then, we have 

 rankD'  !VII  -1-11721+  IV3i  =n (3.14)
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since each of the first and the third column of D' contributes at least I  VI. I and I V3  I to the rank of D' and we 

have

rank(D(72=11721 
        1 •• • 1

(3.15)

 (see  [5]). On the contrary, it is clear that  rankD'n. Consequently, we have  rankD'=n. It is known that the 
matrix D' has full column rank if and only if  k is a vertex of  (2,,, thereby completing the proof.  (See  [5]  ,  [8],  [9] 

for a full account of the properties of the polyhedron.) ^

Combining Lemma 3.4 with Lemma 3.5, we have the theorem below.

Theorem 3.6 : The correspondence (3.12) gives a one-to-one and onto  mapping  from the set 

of all the pairs of the subtrees T1 and T2 of G(T) satisfying the conditions in Lemma 3. 4 to the 

set of all the vertices of  Qx.

 We can characterize the  structure of  Q,, for a directed tree poset. However, no result sheds some light on it for 

more general posets. Besides, it remains an unsettled question how to delete the non-integral vertex from  Q. 

The LP-relaxation technique may not be suit for the cardinality-restricted ideal problems such as Problem PK. 

Much still remains to be done.
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