The Minimum-weight k-Ideal Problem on a Directed Tree Poset and Its Polyhedron

Toshio Nemoto

Abstract

Suppose we are given a poset(partially ordered set) $\mathcal{P}=(V, \preceq)$, a real-valued weight $w(v)$ associated with each element $v \in V$ and a positive integer κ. We consider the problem which asks to find an ideal of size κ of \mathcal{P} such that the sum of the weights of the elements of this ideal is the minimum for all ideals that can be constructed from \mathcal{P}. We call this problem the minimum-weight κ-ideal problem. In this paper we explore a further possibility for a solvable case of this problem because it has been proven that this problem is $\mathcal{N P}$-hard even if the Hasse diagram representing a given poset is a bipartite graph. We obtain two new results. First, we describe an $\mathrm{O}\left(\kappa^{2} n\right)$ algorithm on the special poset whose Hasse diagram is a directed tree, which is called a directed tree poset. Here n is the cardinality of the underlying set of the given poset. This outperforms an $\mathrm{O}\left(n^{4}\right)$ algorithm that is the best previously known. Secondly, we show a characteristic of the polyhedron obtained from the LPrelaxation of the κ-ideal problem on a directed tree poset. This is the first step to solve the other type κ-ideal problems from the LP-relaxation technique.

1. Introduction

A binary relation \preceq on a set V is called a partial order if it satisfies the following three conditions: $\forall v \in$ $V: v \preceq v$ (Reflexivity), $v \preceq w, w \preceq v \Rightarrow v=w$ (Antisymmetry), $u \leq v, v \preceq w \Rightarrow u \leq w$ (Transitivity). If $u \leq v$ and $u \neq v$, we write $\hat{u} \prec v$. We call the pair (V, \preceq) a partially ordered set or a poset for short. A poset $\mathcal{P}=(V, \preceq)$ is usually represented by a (directed) graph $G(\mathcal{P})=(V, A(\mathcal{P}))$ which is called the Hasse diagram, where $A(\mathcal{P})=\{(u, v) \mid u, v \in V, u \prec v$ and there exists no element \hat{v} such that $u \prec \hat{v} \prec v\}$. For a poset $\mathcal{P}=(V, \preceq)$ a subset I of V is called an ideal of P if $u \leq v \in I$ always implies $u \in I$. Posets and iedals play a fundamental and essential role in the systems represented by a directed graph or a network. Therefore, they lie in numerous application settings and in many forms (see, e. g., [1], [6], [7]).

Suppose we are given a poset $\mathcal{P}=(V, \preceq)$, a real-valued weight $w(v)$ associated with each element $v \in V$ and a positive integer κ. Then the minimum-weight cardinality-restricted ideal problem (of size κ) or the minimum-weight k-ideal problem discussed in this paper is formulated as follows:

$$
\begin{align*}
\mathrm{P}_{\kappa}: & \text { Minimize } \sum_{v \in I} w(v) \tag{1.1a}\\
& \text { subject to } I \in \mathcal{I}(\mathcal{P}), \tag{1.1b}
\end{align*}
$$

$$
\begin{equation*}
|I|=\kappa, \tag{1.1c}
\end{equation*}
$$

where $\mathcal{I}(\mathcal{P})$ is the set of all the ideal of \mathcal{P}. The optimization problem on the ideal is valuable because many application in real-life are formalized as the ideal problem such as the above problem. Therefore, various types of this class of problems have been well researched, and Problem P_{κ} is known to be $\mathcal{N P}$-hard to the size of the Hasse deagram $G(\mathcal{P})$ representing a given poset \mathcal{P} (see[4] for the concept of $\mathcal{N P}$-hard) even if the Hasse diagram $G(\mathcal{P})$ is a bipartite graph (see[3] for basic trerminology on the graph theory). This proposition drives us to the question on which families of posets we can solve Problem P_{κ} in polynomial time.

A study on this question was recently made by Faigle and Kern[2], and it revealed that we can solve Problem P_{K} in $\mathrm{O}\left(n^{4}\right)$ on the special poset whose Hasse diagram is a directed tree. We call such a poset a directed tree poset. Essentially more general classes of posets having a polynomial time algorithm for this problem have not been found yet. It still remains to be done.

In this paper we focus on Problem P_{κ} on a directed tree poset. First, we propose a simple implementation of the $\mathrm{O}\left(n^{4}\right)$ algorithm for Problem P_{κ} on a directed tree poset proposed by Faigle and Kern[2], and reduce its complexity to $\mathrm{O}\left(\kappa^{2} n\right)$. The main cause of improvement is to transform the directed tree poset into an auxiliary binary tree. It leads to a simple computation and a strict estimation of the time complexity. Secondly, we show characteristics of the polyhedron obtained from the LP-relaxation of the κ-ideal problem on a directed tree poset. This result is the first step to solve the other type κ-ideal problems from the LP-relaxation technique. Each of the results has been developed from that in [2].

2. An Improved Algorithm

In this section we propose an $\mathrm{O}\left(\kappa^{2} n\right)$ improved algorithm for the minimum-weight κ-ideal problem $\left(\mathrm{P}_{\kappa}\right)$ on a directed tree poset $\mathcal{T}=(V, \preceq)$ with root v_{1}. The essential behavior of the improved algorithm is the same as that of the algorithm proposed by[2]: For the Hasse diagram $G(\mathcal{T})=(V, A(\mathcal{T}))$ of \mathcal{T}, starting with the leaves of $G(\mathcal{T})$, we successively move down to the root by computing the optimal value for Problem $\mathrm{P}_{t}(0 \leqq t \leqq \min \{|V(v)|, \kappa\})$ on the directed subtree with root v of $G(\mathcal{T})$. Here,

$$
\begin{equation*}
V(v)=\{u \mid \text { there is the path from } u \text { to } v \text { in } G(\mathcal{T})\} \tag{2.1}
\end{equation*}
$$

The original algorithm[2] takes $\mathrm{O}\left(n^{3}\right)$ to compute the optimal value at a vertex from the values for its children if the number of them is more than 2 . However, we improved the time complexity to do it to $\mathrm{O}\left(\kappa^{2}\right)$ by transforming from $G(\mathcal{T})$ into an auxiliary binary tree, which is a binary directed tree, i. e., the number of children of any vertex is at most 2 , and from whose directed subtree we can retrieve the ideal of \mathcal{T} easily.

First, for the Hasse diagram $G(\mathcal{T})=(V, A(\mathcal{T}))$ of \mathcal{T}, we construct a directed tree $\tilde{G}(\mathcal{T})=(\tilde{V}, \tilde{A}(\mathcal{T}))$ by the following steps:

Step $1:$ Put $\tilde{V}=V$ and $\tilde{A}(\mathcal{T})=A(\mathcal{T})$.
Step 2 : Repeat the following (*) until $\{v \in \tilde{V} \mid$ the number of v 's children is more than 2$\}=\emptyset$.
(*) Find a vertex $v \in \tilde{V}$ such that the number of v 's children is more than 2 and choose its two children u_{1}, u_{2}. Add a dummy vertex \tilde{v} into $\tilde{G}(\mathcal{T})$ such that its parent is v and
its two child are u_{1} and u_{2}. That is, put $\tilde{V}:=\tilde{V} \cup\{\tilde{v}\}$ and $\tilde{A}(\tilde{\mathcal{T}}):=(\tilde{A}(\mathcal{T})-\{(u, v)\}) \cup$ $\left\{\left(u_{1}, \tilde{v}\right),\left(u_{2}, \tilde{v}\right),(\tilde{v}, v)\right\}$.

We call $\tilde{G}(\mathcal{T})=(\tilde{V}, \tilde{A}(\mathcal{T}))$ obtrained by the above steps an auxiliary tree for \mathcal{T}. See Figure 1 for an example of the auxiliary tree $\tilde{G}(\mathcal{T})$ for a directed tree poset \mathcal{T}.

Figure 1 : An example for a directed tree poset \mathcal{T}.
We remark that the auxiliary tree $\tilde{G}(\mathcal{T})$ has the following features:
(1) The root v_{1} and leaves are not dummy vertex;
(2) For a directed subtree $\hat{T}=(\hat{T}, \hat{A})$ with root v_{1} of $\tilde{G}(\mathcal{T})$ and the set V^{d} of all the dummy vertices in \hat{V}, the set $\hat{V}-V^{\mathrm{d}}$ is an ideal of \mathcal{T};
(3) $|\hat{V}| \leqq 2|V|-3$ and $|\tilde{A}(\mathcal{T})| \leqq 2|V|-4$.

Algorithm

Input : A directed tree poset $\mathcal{T}=(V, \preceq)$ withroot v_{1} and a positive integer κ.
Output : The solution of Problem P_{κ} on \mathcal{T}.
Step 1 : Construct the auxiliary tree $\tilde{G}(\mathcal{T})=(\tilde{V}, \tilde{A}(\mathcal{T}))$ for \mathcal{T}.
Step 2 : Repeat the following $(*)$ for v_{i} in topological order.
(*) Compute $W\left(t, v_{i}\right)\left(0 \leqq t \leqq \min \left\{\left|\tilde{V}\left(v_{i}\right)\right|, \kappa\right\}\right)$ according to the above(i), (ii) and (iii).
Step 3 : The current $W\left(\kappa, v_{1}\right)$ is the optimal solution.
(End)
Figure 2 : The algorithm for determining $W\left(\kappa, v_{1}\right)$.

Secondly, we sketch an implementation using $\tilde{G}(\mathcal{T})$. For a vertex $v_{i} \in \tilde{V} \hat{T}\left(v_{i}\right)=\left(\hat{V}\left(v_{i}\right), \hat{A}\left(v_{i}\right)\right)$ stands for a directed subtree with root v_{i} of $\tilde{G}(\mathcal{T})$ and $\hat{V}^{\mathrm{d}}\left(v_{i}\right)$ the set of all the dummy vertices in $\hat{V}\left(v_{i}\right)$. Furthermore, let us define

$$
\begin{equation*}
W\left(t, v_{i}\right)=\min \left\{\sum_{v \in \hat{V}\left(v_{i}\right)} w(v)| | \hat{V}\left(v_{i}\right)-\hat{V}^{d}\left(v_{i}\right) \mid=t\right\}\left(0 \leqq t \leqq \min \left\{\left|\tilde{V}\left(v_{i}\right)\right|, \kappa\right\}\right) \tag{2.2}
\end{equation*}
$$

We can compute $W\left(t, v_{i}\right)$ from the values obtained for at most two children of v_{i}, which is denoted by $u_{v_{i}}^{1}$ and $u_{v_{i}}^{2}$, as follows:
(i) For a leaf v_{i} of \mathcal{T}

$$
\begin{align*}
& W\left(0, v_{i}\right)=0 \tag{2.3a}\\
& W\left(1, v_{i}\right)=w\left(v_{i}\right) \tag{2.3b}
\end{align*}
$$

(ii) For a dummy inner vertex v_{i}

$$
\begin{equation*}
W\left(t, v_{i}\right)=\min \left\{W\left(t^{\prime}, u_{v_{i}}^{1}\right)+W\left(t^{\prime \prime}, u_{v_{i}}^{2}\right) \mid t^{\prime}+t^{\prime \prime}=t\right\}\left(0 \leqq t \leqq \min \left\{\left|\tilde{V}\left(v_{i}\right)\right|, \kappa\right\}\right) \tag{2.4}
\end{equation*}
$$

(iii) For a non-dummy inner vertex v_{i}

$$
\begin{align*}
& W\left(0, v_{i}\right)=0 \tag{2.5a}\\
& \begin{aligned}
W\left(t, v_{i}\right) & =w\left(v_{i}\right)+\min \left\{W\left(t^{\prime}, u_{v_{i}}^{1}\right)+W\left(t^{\prime \prime}, u_{v_{i}}^{2}\right) \mid t^{\prime}+t^{\prime \prime}=t-1\right\} \\
& \left(1 \leqq t \leqq \min \left\{\left|\tilde{V}\left(v_{i}\right)\right|, \kappa\right\}\right)
\end{aligned}
\end{align*}
$$

In the case when an inner vertex v_{i} has only one child $u_{v_{i}}^{1}$, replace $\min \left\{W\left(t^{\prime}, u_{v_{i}}^{1}\right)+W\left(t^{\prime \prime}, u_{v_{i}}^{2}\right) \mid t^{\prime}+t^{\prime \prime}=t\right\}$ in (2.4) by $W\left(t, u_{v_{i}}^{1}\right)$, and $\min \left\{W\left(t^{\prime}, u_{v_{i}}^{1}\right)+W\left(t^{\prime \prime}, u_{v_{i}}^{2}\right) \mid t^{\prime}+t^{\prime \prime}=t-1\right\}$ in (2.5b) by $W\left(t-1, u_{v_{i}}^{1}\right)$.

The objective function value of an optimal solution of Problem P_{κ} on \mathcal{T} is given by $W\left(\kappa, v_{1}\right)$ due to the definition. The above computation method of $W\left(t, v_{i}\right)$ suggests the "from leaves to root" algorithm for determining $W\left(\kappa, v_{1}\right)$ as shown in Figure 2.

Also see Figure 3 for illustrating the algorithm in the case of $\kappa=4$ on the directed tree poset given in Figure 1. We have $W\left(4, v_{1}\right)=7$ and the corresponding set $\left\{v_{1}, v_{4}, \tilde{v}_{4}, v_{7}, v_{8}\right\}$; hence, the minimum-wight ideal of size 4 of \mathcal{T} is $\left\{v_{1}, v_{4}, v_{7}, v_{8}\right\}$.

Figure 3: Illustrating the algorithm in the case of $\kappa=4$ on the derected tree poset \mathcal{T} shown in Figure 1.

Theorem 2.1 : The algorithm shown in Figure 2 computes $W\left(\kappa, v_{1}\right)$ in $\mathrm{O}\left(\kappa^{2} n\right)$ time.
(Proof) The correctness of the algorithm is clear from the above discussion. We consider the time complexity for the algorithm. Constructing the auxiliary tree $\tilde{G}(\mathcal{T})=(\tilde{V}, \tilde{A}(\mathcal{T}))$ takes $\mathrm{O}(n)$ time. And we need $\mathrm{O}\left(\kappa^{2}\right)$ time to compute $W\left(t, v_{i}\right)\left(0 \leqq t \leqq \min \left\{\left|\tilde{V}\left(v_{i}\right)\right|, \kappa\right\}\right)$ at a vertex v_{i}. Because, in an iteration fo Step 2 , the number of all the pairs of two numbers such that one is chose from $\left\{0,1, \cdots, \min \left\{\left|\tilde{V}\left(u_{v_{i}}^{1}\right)\right|, \kappa\right\}\right\}$ and the other is chosen from $\left\{0,1, \cdots, \min \left\{\left|\tilde{V}\left(u_{v_{i}}^{2}\right)\right|, \kappa\right\}\right\}$ is at $\operatorname{most}(\kappa+1)^{2}$, and the other computations take a constant time.
The number of iterations of Step 2 is $|\tilde{V}|$ times. Notice that $|\tilde{V}| \leqq 2|V|-3$. Hence, the overall bound is $\mathrm{O}\left(\kappa^{2} n\right)$.

If an optimal ideal is required, then the additional data should be held all the contributing vertices in computing $W\left(t, v_{i}\right)$.

3. A Characteristic of the Polyhedron

In this section we show a property of the polyhedron obtained from the LP-relaxation of the cardinalityrestricted ideal problem P_{κ} on a directed tree poset.

The LP-relaxation of Problem P_{k} on a general poset is given as follows:

$$
\begin{align*}
& \mathrm{P}_{\kappa}^{L P}: \text { Minimize } w \boldsymbol{x} \tag{3.1a}\\
& \text { subject to } D^{t} x \leqq \mathbf{0}_{m} \tag{3.1b}\\
& \sum_{v \in V} x(v)=\kappa \tag{3.1c}\\
& \mathbf{0}_{n} \leqq \boldsymbol{x} \leqq \mathbf{1}_{n}
\end{align*}
$$

where D^{t} denotes the transposition of the incidence matrix D of the Hasse diagram representing a given poset, and $\mathbf{O}_{n}\left(\mathbf{1}_{n}\right)$ stands for the all-0 (1) column vector of size n.

It is well known the following fundamental relationship between the non-cardinality-restricted ideal problems which is formulated as $\min \left\{\Sigma_{v \in I} w(v) \mid I \in \mathcal{I}(\mathcal{P})\right\}$ and its LP-relaxation, denoted by ${ }^{\text {LP }}$, whose constraint system do not have only (3.1c) in the above $P_{\kappa}^{L P}$.

Proposition 3.1(see [8]) : The polyhedron $Q=\left\{x \mid D^{t} \boldsymbol{x} \leqq \mathbf{0}_{m}, \mathbf{0}_{n} \leqq x \leqq \mathbf{1}_{n}\right\}$ is integral, i. e., $\min \{w x \mid x \in Q\}$ is attained by an integral vector for each w for which the minimum is finite.

See Figure 4 for an example of a polyhedron Q defined in Proposition 3.1.

Propositon 3.2(see [8]) : An integral optimal solution of Problem P^{LP} is an optimal solution of the minimum-weight non-cardinality-restricted ideal problem.

Due to Proposition 3.2 we can obtain an optimal ideal for the minimum-weight non-cardinality-restricted ideal problem by applying methods for the linear programming problem such as the simplex method.

However, the additional constraint, $\Sigma_{v \in V} \in(v)=\kappa$, breaks the above property, i. e ., the polyhedron

$$
\begin{equation*}
Q_{\kappa}=\left\{x \in Q \mid \sum_{v \in V} x(v)=\kappa\right\} \tag{3.2}
\end{equation*}
$$

is not integral, where the set Q is defined in Proposition 3.1. (See Figure 5 for an example of such polyhedrons.) Therefore, we get difficult in solving the κ-ideal problem from LP-relaxation technique by this observation even if a given poset is a directed tree poset. Nevertheless, we can see the particular structure of the polyhedron Q_{K} on a directed tree poset.

Lemma 3.3 : For a directed tree poset $\mathcal{T}=(V, \preceq)$ with root v_{1} and a positive integer κ with $\kappa \leqq|V|$, consider the polyhedron Q_{K} defined by (3.2). For a vertex \hat{x} of Q_{K} let us define sets

$$
\begin{equation*}
V_{1}=\{v \in V \mid \hat{x}(v)=1\} \tag{3.3}
\end{equation*}
$$

A poset \mathcal{T}

Figure 4: An example of a poset \mathcal{T} and its polyhedron Q.
and

$$
\begin{equation*}
V_{2}=\{v \in V \mid 0<\hat{x}(v)<1\} . \tag{3.4}
\end{equation*}
$$

Then, for all $v \in V_{2} \hat{x}(v)$ has the same constant value. Indeed, for all $v \in V_{2}$

$$
\begin{equation*}
\hat{x}(v)=\frac{\kappa-\left|V_{1}\right|}{\left|V_{2}\right|} . \tag{3.5}
\end{equation*}
$$

(Proof) If \hat{x} is a vertex of Q_{k}, then it is determined by n linearly independent equations from the systm given by (3.1b) $\sim(3.1 \mathrm{~d})$ (see[8]), which are expressed as follows:

$$
\begin{align*}
& D_{0}^{t} \hat{\boldsymbol{x}}=\mathbf{0}_{\left|V_{2}\right|-1} \text { for submatrix } D_{0} \text { of } D, \tag{3.6a}\\
& \mathbf{1}_{n}^{t} \hat{\boldsymbol{x}}=\kappa, \tag{3.6b}\\
& \hat{x}(v)=1\left(v \in V_{1}\right), \tag{3.6c}\\
& \hat{x}(v)=0\left(v \in V_{3}\right), \tag{3.6d}
\end{align*}
$$

- : the vertices of Q
O : the non-integral vertices of Q_{κ}

$$
Q_{\kappa}=\left\{x \in Q \mid x\left(v_{1}\right)+x\left(v_{2}\right)+x\left(v_{3}\right)=\kappa\right\}
$$

Figure 5 : The Polyhedron $Q_{\kappa}(\kappa=1,2)$ for the directed tree poset \mathcal{T} shown in Figure 4.
where $V_{3} \equiv V-\left(V_{1} \cup V_{2}\right)=\{v \in V \mid \hat{x}(v)=0\}$. Notice that D_{0}^{t} can be expressed as

$$
D_{0}^{t}=\left(\begin{array}{lll}
\boldsymbol{D}_{V_{1}}^{t} & \mathbf{0} & \mathbf{0} \tag{3.7}\\
\mathbf{0} & D_{V_{2}}^{t} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & D_{V_{3}}^{t}
\end{array}\right)
$$

where $D_{V_{i}}(i=1,2,3)$ denotes the incidence matrix of the subgraph of the Hasse diagram $G(\mathcal{T})$ of the given directed tree poset T induced by V_{i}, respectively. By deleting the evident factor from the above n linearly independent equations we obtain the following equations with respect to $\hat{x}\left(V_{2}\right)=\left(x(v) \mid v \in V_{2}\right)$:

$$
\begin{align*}
& D_{V_{2}}^{t} \hat{\boldsymbol{x}}\left(V_{2}\right)=\mathbf{0}_{\left|V_{2}\right|-1} \tag{3.8a}\\
& \mathbf{1}_{V_{2}}^{t}\left|\hat{\boldsymbol{x}}\left(V_{2}\right)=\kappa-\left|V_{1}\right| .\right. \tag{3.8b}
\end{align*}
$$

These are linearly independent, that is,

$$
\begin{equation*}
\operatorname{rank}\binom{D_{V_{2}}^{t}}{\mathbf{1}_{\left|V_{2}\right|}^{t}}=\left|V_{2}\right| . \tag{3.9}
\end{equation*}
$$

Therefore,

$$
\hat{\boldsymbol{x}}\left(V_{2}\right)=\binom{D_{V_{2}}^{t}}{\mathbf{1}_{\left|V_{2}\right|}^{t}}^{-1}\binom{\mathbf{0}_{\left|V_{2}\right|-1}}{\kappa-\left|V_{1}\right|}=\frac{1}{\left|V_{2}\right|}\left(\begin{array}{c}
1 \tag{3.10}\\
* \\
\vdots \\
1
\end{array}\right)\binom{\mathbf{0}_{\left|V_{2}\right|-1}}{\kappa-\left|V_{1}\right|}=\frac{\kappa-\left|V_{1}\right|}{\left|V_{2}\right|}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right) .
$$

We have thus proved the lemma.

Lemma 3.4 : For the set V_{1} and V_{2} defined in Lemma 3.3 let us define subgraphs $T_{1}=\left(V_{1}, A_{V_{1}}\right)$ and $T_{2}=\left(V_{2}, A_{V_{2}}\right)$ of the Hasse diagram $G(\mathcal{T})$ of τ induced by V_{1} and V_{2}, respectively. Then T_{1} and T_{2} are the directed subtrees of $G(\mathcal{T})$ satisfying the following three conditions:
(i) The root of T_{1} is v_{1}.
(ii) The parent \hat{v}^{\prime} of the root v^{\prime} of T_{2} is in V_{1} if $V_{1} \neq \emptyset$; otherwise $v^{\prime}=v_{1}$.
(iii) $\left|V_{1}\right|+\left|V_{2}\right| \geqq_{\kappa}$ and $V_{1} \cap V_{2}=\emptyset$.
(Proof) It is clear that the condition(iii) holds true. T_{1} is a directed subtree with root v_{1} since the set V_{1} forms an ideal of \mathcal{T} and v_{1} is the unique minimal element of \mathcal{T}. From (3.9) we have

$$
\begin{equation*}
\operatorname{rank} D_{V_{2}}^{t}=\left|V_{2}\right|-1 \tag{3.11}
\end{equation*}
$$

This implies that T_{2} forms a tree (see[5]), and a subtree T_{2} of $G(\mathcal{T})$ becomes a directed tree. For the root v^{\prime} of T_{2} and the parent \hat{v} of v^{\prime}, the constraint (3.1b) and the fact that $\hat{v} \notin V_{2}$ impose an inequality $x(\hat{v})>x\left(v^{\prime}\right)$. By virtue of Lemma 3.3 the non-integral value of \hat{x} is unique. Hence, $x(\hat{v})$ must be 1 , i. e., $\hat{v} \in V_{1}$. If $V_{1}=0$, then $v^{\prime}=v_{1}$ since the set V_{2} must form an ideal of \mathcal{T} instead of V_{1}.

Lemma 3.5: Consider two directed subtrees $T_{1}=\left(V_{1}, A_{V_{1}}\right)$ and $T_{2}=\left(V_{2}, A_{V_{2}}\right)$ of the Hasse diagram $G(\mathcal{T})$ of a directed tree poset $\mathcal{T}=(V, \preceq)$ with root v_{1} satisfying the conditions shown in Lemma 3.4 for a positive integer κ with $\kappa \leqq|V|$. Let us define \hat{x} by

$$
\hat{x}(v)= \begin{cases}1 & \left(\text { if } v \in V_{1}\right) \tag{3.12}\\ \frac{\kappa-\left|V_{1}\right|}{\left|V_{2}\right|} & \left(\text { if } v \in V_{2}\right) \\ 0 & (\text { otherwise })\end{cases}
$$

Then, \hat{x} is a vertex of the polyhedron Q_{k}.
(Proof) We can see that $\hat{x} \in Q_{k}$ by substituting $\hat{x} \operatorname{into(3.1b)\sim (3.1d).~Now,~we~show~that~} \hat{x}$ is a vertex of Q_{k}. Some active inequalities for $\hat{\boldsymbol{x}}$ are listed below. (Here, we say an inequality $\boldsymbol{a}^{t} \boldsymbol{x} \leqq \boldsymbol{b}$ is active for $\hat{\boldsymbol{x}}$ in a given system if $\boldsymbol{a} \boldsymbol{t} \hat{\boldsymbol{x}}=\boldsymbol{b}$.)

$$
\left(\begin{array}{ccc}
D_{V_{1}}^{t} & \mathbf{0} & \mathbf{0} \tag{3.13}\\
\mathbf{0} & D_{V_{2}}^{t} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & D_{V_{3}}^{t} \\
1 \cdots 1 & 1 \cdots 1 & \cdots \cdots 1 \\
E_{\left|V_{1}\right|} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & E_{\left|V_{3}\right|}
\end{array}\right) \hat{\boldsymbol{x}}=\left(\begin{array}{l}
\mathbf{0} n \\
\kappa \\
\mathbf{1} \\
\mathbf{0}_{\left|V_{1}\right|}
\end{array}\right)
$$

The left side matrix of (3.13) is denoted by D^{\prime}. Then, we have

$$
\begin{equation*}
\operatorname{rank} D^{\prime} \geqq\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{3}\right|=n \tag{3.14}
\end{equation*}
$$

since each of the first and the third column of D^{\prime} contributes at least $\left|V_{1}\right|$ and $\left|V_{3}\right|$ to the rank of D^{\prime} and we have

$$
\begin{equation*}
\operatorname{rank}\binom{D_{V_{2}}^{t}}{1 \cdots}=\left|V_{2}\right| \tag{3.15}
\end{equation*}
$$

(see[5]). On the contrary, it is clear that $\operatorname{rank} D^{\prime} \leqq n$. Consequently, we have rank $D^{\prime}=n$. It is known that the matrix D^{\prime} has full column rank if and only if \hat{x} is a vertex of Q_{K}, thereby completing the proof. (See[5], [8], [9] for a full account of the properties of the polyhedron.)

Combining Lemma 3.4 with Lemma 3.5, we have the theorem below.

Theorem 3.6: The correspondence (3.12) gives a one-to-one and onto mapping from the set of all the pairs of the subtrees T_{1} and T_{2} of $G(\mathcal{T})$ satisfying the conditions in Lemma 3. 4 to the set of all the vertices of $Q \kappa$.

We can characterize the structure of Q_{κ} for a directed tree poset. However, no result sheds some light on it for more general posets. Besides, it remains an unsettled question how to delete the non-integral vertex from Q_{k}. The LP-relaxation technique may not be suit for the cardinality-restricted ideal problems such as Problem P_{K}. Much still remains to be done.

References

[1] R.K.Ahuja, T.L.Magnanti and J.B.Orlin : Network Flows : Theory, Algorithms, and Applications (Prentice Hall, New York, 1993).
[2] U.Faigle and W.Kern : Computational complexity of some maximum average weight problems with precedence constraints. Operations Research 42 (1994) 688-693.
[3] S.Fujishige : Submodular Function and Optimization (Annals of Discrete Mathematics, vol.47, North-Holland, Amsterdam, 1991).
[4] M.R.Garey and D.S.Johnson : Computers and Intractability : A Guide to the Theory of NPCompleteness (W.H.Freeman and company, San Francisco, 1979).
[5] G.L.Nemhauser and L.A.Wolsey : Integer and Combinatorial Optimization (Wiley, New York, 1988).
[6] J.C.Picard : Maximal closure of a graph and applications to combinatorial problems. Management Science 22 (1976) 1268-1272.
[7] J.C.Picard and M.Queyranne : Selected applications on minimum cuts in networks. Information Systems and Operational Research 20 (1982) 394-422.
[8] A.Schrijver: Theory of Linear and Integer Programming (John Wiley and Sons, Chichester, 1986).
[9] J.Stoer and C.Witzgall : Convexity and Optimization in Finite Dimensions I (Springer-Verlag, Berlin, 1970)

