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                                Abstract 
   Suppose we are given a poset(partially ordered set) P = (V, a real-valued weight w(e) 

 associated with each element  e  c V and a positive integer k. We consider the problem which 
asks to find an ideal of size k of  P such that the maximum element weight in the ideal is the 
minimum for all ideals that can be constructed from P . We call this problem the minimax 
k-ideal problem. In this paper we propose two fast algorithms: a greedy algorithm and a 
threshold algorithm. Combining these algorithms , we accomplish the best available bound  O(

min{n log n + m, (m + n) log* n}) for this problem; the two bounds in this expression are , respectively, due to the greedy algorithm and the threshold algorithm , where  =  n and m i
s the number of arcs of the Hasse diagram representing the given poset . This ruesult shows 
that this problem does not have an  fl(n log n + m) lower bound in spite of the fact that the 
minimum-range k-ideal problem , which is a general problem of the minimax k-ideal problem, 
has an  S2 (n  log  n + m) lower bound.

1. Introduction

A binary relation  -< on a set V is called a partial order when it has the following properties: 

 • Vv E  V: v  --<  v. (Reflexivity) 

 • v  --<w, w  -  v v = w. (Antisymmetry)

 •  u--<v,v--<wu--<w.  (Transitivity) 

We call the pair (V,  -.<) a partially ordered set or a poset for  short . For a poset P = (V,  -<) a subset 

I of V is called an ideal of P if u  --< v E  I implies u  E  I . Posets and ideals appear in numer-

ous application settings and in many forms (see, e.g., [Ahuja+Magnanti+Orlin93] , [Picard76], 

 [Picard+Queyranne82]). In this paper we consider the  minimax k-ideal problem defined as 
follows:

 Pk-minimax Minimize

subject to

max  w(e) 
 eE/ 

I  e 1(P),

    k,

 (1.1a)

 (1.1b)

 (1.1c)
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where w is a weight function w : V  R. and assumed as  w(0)  -=-  —oo. When there is no 

possibility of confusion, an optimal ideal of Problem  Pk-minimax is called a  minimax ideal (of size 

 k)  of  73'. 

   In general, for the minimax combinatorial optimization problems there are three main strate-

gies (cf. [Pferschy95]  which classifies into three main strategies for solving the bottleneck as-
signment problem): The first is based on a "greedy" principle — that is, it makes the cheapest 

choice at each step; the second is based on a "threshold" method which needs an efficient search 

method to find an optimal solution (see  [Lawler76]); the third is a combination of the above two 

strategies (see  [Punnen+Nair94] which succeeded in constructing an efficient algorithm for the 

bottleneck assignment problem by this strategy). 

   According to the first and the second general approaches we propose a greedy algorithm and 

a threshold algorithm for the minimax k-ideal problem. To the author's knowledge, no one has 
ever considered the minimax k-ideal problem. The greedy algorithm runs in  O(n log n +  m) 

time and the threshold method can be implemented in  0((m + n) log*  n) time, where log* is the 

iterated logarithm, defined by 

 log(°)  x  =  x, (1.2a) 

                 log(i+1) x = log  log(i) x, (1.2b) 

                      log* x =  min{ i  log(i) x  <  1}. (1.2c) 

Notice that log* x is a very slowly growing function. For example, if x = 265536  , then log* x = 5. 
Therefore, the required time of the threshold method is shorter than that of the greedy algorithm 

when m <<  (2)2. 

  Combining these algorithms, we accomplish the best available bound  0(min{  n log  71  + (m+ 
n) log* n}) for this problem; the two bounds in this expression are, respectively, due to the greedy 
algorithm and the threshold algorithm. This time complexity shows that the minimax k-ideal 

problem does not have an  SZ(n  log  n  +  m) lower bound in spite of the fact that the minimum-range 
k-ideal problem, which is a general problem of the minimax k-ideal problem, has an Q(n log n+m) 
lower  bound[Nemoto95].

2. A Greedy Algorithm 

We propose an  O(n log n + m) algorithm for Problem  Pk-minimax based on the greedy principle. 

The algorithm enlarges an element set J from an evident ideal 0 with the property that J is an 

ideal of  73' keeping. For the set J the algorithm maintains the set C of all the upper neighbors of 

each element in J, which are candidates for inclusion in J. In choosing an element from the set

 —136—



C, we use a greedy principle on weights. This approach yields an  0(n log  n  +  m) time complexity. 

The algorithm is shown precisely in Figure 1. 

     Algorithm  MINIMAX-GREEDY(P, k) 

      Input: A poset P = (V, and a positive integer k. 

      Output: A minimax ideal of size k  of  P. 

      Step 1: Put J := 0. 

      Step 2: Repeat the following (*) k times. 

          (*) Put C := {v v is a minimal element of P(V — J)}. If C  = 0, then 
              stop (there is no feasible ideal of  P); otherwise find a minimum-weight 

              element  i) in C and put  J J U 

       Step 3: The current J is a minimax ideal of size k. 

     (End) 

                    Figure 1: A greedy algorithm for Problem  Pk-minimax.

  The validity of this algorithm is shown below. 

Lemma 2.  1  : The algorithm  MINIMAX-GREEDY(P, k) computes a minimax ideal of size k of 

a  poset  P. 

(Proof) For the ideal  I found by the algorithm MINIMAX-GREEDY(P, k), let  e be a maximum-
weight element in  I, and let C' and J'  be the set C and J, respectively, in the algorithm 

MINIMAX-GREEDY(P, k) just before  7") is chosen. Similarly, for a minimax ideal  I* of size k, 

let  v* be a maximum-weight element in  /*. Suppose  w(13) >  w(v*). If  v* J', i.e.,  v* E V — J', 

then  /*  fl C' 0 from the fact that C' is the set of all the minimal elements of P(V — J'). Hence, 

 /* has an element  i5 E  /*  n C' such that w(v*) <  (w(13)  <)  w(b), contradicting the fact that e* 

is the maximum weight element in  I*. If  v* E J', then there exists an element  .73  E C'  fl  /* such 

that  w(i3)  < w(v*)(<  w(f))) because  IP  I >  VI and e* has the maximum weight in  P. This 

contradicts the choice of  v. Consequently, we have  w(v) = w(v*). ^

  We now turn to the time complexity  analysis. In Step 2-(*), it is not difficult to renew the set 

C by making use of the list of all the lower neighbors of each element in P(V — J). Notice that the 

list of all the lower neighbors is controlled in the complete list representation of the given Hasse 

diagram G(P). Suppose  Ci is the set C at the ith iteration, we can get  Ci+i =  (Ci — U {v 
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the list of arcs  61-t, has just become empty by removing  i from  G(P(V — J))}. Finding C1 and 

identifying new elements added to  Ci+i at the end of the ith iteration, require  0(7-n + n) time in 

the whole of the algorithm. By having the heap data structure (see  [Ahuja+Magnanti+Orlin93]) 

for C, finding a minimum-weight element in C, inserting new members to C and deleting  f, 

from C are carried out in  0(log  n), respectively. Since each operation is done for an element 

at most once, it takes  O(n log n) time. In total, this algorithm requires  O(n log  7T,  + in) time. 

Consequently, we have the following theorem. 

Theorem 2.  2  : The algorithm MINIMAX-GREEDY(P, k)  computes a minimax ideal of size k 

 of  P  in  0(n  log  n  +  m). ^ 

Example: Consider Problem  Pk-minimax of k  = 5 on the poset  P represented by the Hasse 

diagram shown in Figure 2. The weight of each element is attached at the lower left of the 

element. The algorithm MINIMAX-GREEDY(P, 5) might execute as indicated in Table 1. At 

termination, we have a minimax ideal  {vi,  v4,  v8,  v13,  214}.

Figure 2: The Hasse diagram G(P) representing a poset P = 
(V,  -‹) with the weights.

3. A Threshold Algorithm 

Combining an efficient search method and a threshold method, we describe the other algo-

rithm for the minimax cardinality-restricted ideal  problem. Basically, the framework of the 

algorithm described here is the same as that of the algorithm proposed by Gabow and Tar-

jan  [Gabow+Tarjan88] for the bottleneck spanning tree problem. However, to make use of the 

framework it is necessary to give some new ideas. 
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Table 1: The algorithm MINIMAX-GREEDY(P, 5) applied to 
the poset shown in Figure 2.

Iter. I C V

Step 1

 Step  2 1  {vi,  v2, V3}  {v1}
2  {v2,  v3,  v4} V4  {v1, v4}
3  {y2,  v3,  V81 Vg {v1, V4, v8}
4  {112, V3,  V13,  v14} V14  {v1, V4, V8,  v14}
5  {v2,  V3, V13} V13  {Vi, V4,  V8, V14,  v13}

  First we show two lemmas which play a fundamental role in the threshold approach for the 
ideal problems. 

Lemma 3.  1  : For a poset P  = (V,  --<) and a subset U of V let 

              W = V — U F(v), (3.1) 
 vEU 

where F(v) {w w E V, v w} which is called the principal filter generated by v. Then 

 WC  V  —  U and W is an ideal of P. 

(Proof) It is clear that W  C V — U. Suppose W is not an ideal of  P, that is, there exist two  ele 
ments w E W and  u  ¢ W (u  e  Uveu F(v)) such that u w on P. Since w E F(u)  C  UveU F(v), 

we have w  ¢  W, contradicting the fact w E  W. ^

Lemma 3.  2  : For a poset P = (V,  -‹) let I be an ideal of P. Then, for a subset U  C V, U is 

an ideal of the subposet P(I) if and only if U is an ideal of P and U  C I. 

(Proof)  (=) Suppose U is not an ideal of  P. Hence, there exist two elements u and v such that 

u v,  v  E U and u U. If u  E I — U, then it contradicts the fact that U is an ideal of  P(I). If 

 u  E  V  -  I, then it contradicts the fact that I is an ideal of P. Therefore, U is an ideal of P. 

 () Suppose U is not an ideal of  P(I), i.e., there exist two elements u and v such that u v, 

v  E U and u U, i.e., v E U and u E  /—  U  C  V—  U. This contradicts that U is an ideal of P.  ^

For any real value let  H(0) =  {el e  E  E,w(e) >  0}. Then, the set 

                         E  —U,EH(0)F(e) (3.2)
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is an ideal  of  P due to Lemma 3.  1  . We abbreviate the subposet  P(E -  UeEH(0)F(e)) induced 

by (3.2) to  P(-oo,  0]. Now, let 

              [3* =  min{ ,Q there is an ideal of size k of  ?(-oo,  01}. (3.3) 

Then, we have the following lemma. 

Lemma 3.  3  : Any ideal of size k of  P(-oo,  01 is a minimax ideal of size k  of  P. 

(Proof) Suppose that there exists an ideal I' of size k  of  ? such that max{w(e) e E  I'} <  13*. 

Then,  //  is also the ideal of  P(-00,  01 from the fact that I'  C E -  UeEH(0*)F  (e) and Lemma 3. 

 2  . This contradicts the minimality of  )3*.  ^

To find a minimax ideal of size k  of  7, it suffices to compute  0* since an ideal of size k of 

?(-oo,  l31 can be found in  0(m + n) time by the breath(depth)-first search method. 

  We find  )3* by repeatedly splitting and narrowing the interval of possible values of  13. The num-

ber of intervals which the current interval is split into is given by a function A(2, i) :  {I,  2,  •  •  •} -4 

 Z+ defined by 

 A(2,1) = 2, (3.4a) 

 A(2,  i) =  2A(2,i-1)  (3.4b) 

This is the Ackermann's function with a slight change (see [Tarjan83] for Ackermann's function). 

See Figure 3 for the description of a threshold algorithm for Problem  -Pk-minimax-

Here, for any real number x, [x] denotes the maximum integer less than or equal to  x, and [xl 

denotes the minimum integer larger than or equal to x. Though it is not necessary to construct 

the set  SA(2,0+1 in Step 2-(a) of the algorithm  MINIMAX-THRESHOLD(?, k), we need it to 

implement this algorithm efficiently. The efficient implementation will be described later. The 

validity of the above algorithm is shown below. 

Theorem 3.  4  : The algorithm MINIMAX-THRESHOLD(?, k) computes a minimax ideal cor-

rectly. 

(Proof) This algorithm terminates in a finite number of iterations since the cardinality of the 

finite set U is strictly decreasing in Step 2-(d). It is clear  13* = A when A =  11. From the property 

that  P(So  U  •  •  • U  Si) has an ideal of size k  of  P in Step 2-(c), we have  (3*  = A(= min{w(v) v 

 U}  = min{w(v)  I v E  U1})  if  j  = 0.

  We now consider an efficient implementation of this algorithm and the time complexity anal-

ysis. It is easy to implement Step 1, Step 2-(a) and Step 2-(d). Therefore the remaining part in 

this section is devoted to the implementation of Step 2-(b) and (c). 
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Algorithm MINIMAX-THRESHOLD(P, k) 

Input: A poset P = (V, and a positive integer k. 

Output: A minimax ideal of size k of P. 

Step 1: Put A := min{w(v)  I v  E V},  µ := max{w(v)  I  v  E V} and i := 1. 

Step 2: Repeat the following (a),(b),(c) and (d). 

   (a)  Let  So  :=  {v  I  v  E  V,  w(v)  5_  A}  and  U  :=  {v  I  v  E  V,  A  <  w(v)  tt} 
       (Let  SA(2,2)+1  {v E <  11)  (V)}  -) 

    (b) Partition U into  A(2,  i) subsets Si,  S2,  •  • ,  SA(2,t), each of size LA1(1-1210] 
       or  rAr2li)i, such that if v E  Si and u E  S3+1  (j =  1,  •  •  •  ,A(2,i) — 1), 

       then w(v)  <  w(u). 

    (c) Find  j* =  min{j  I P(So U  Sl  U  •  •  • U  Si)has an ideal of size k of  P}. 

    (d) Put A  := min{w(v) v := max{w(v)  v E  Sj* and 
        i :=  i  + 1.  If  j* = 0 or A  =  it, then put  0* := A and stop. 

Step 3: Find an ideal of size k of  P(—oo,,@*]. It is a minimax ideal of size k of 
     P. 

(End)

Figure 3: A threshold algorithm for Problem  Pk-minima,

  First, we consider the implementation of Step 2-(b). It can be carried out by finding the 

median: Split U into a lower half and an upper half, then split each half into halves and so on. 

See Figure 4 which precisely describes the procedure to implement Step 2-(b). The technique 

used in  (14) of the procedure PARTITION-A(2, i)-SUBSETS is known as the procedure select 

 [Aho+Hoperoft+Ullman83]. 

Lemma 3.  5  : The procedure  PARTITION-A(2, i)-SUBSETS implements the required work in 

Step 2-(b) in  O(IUI  log  A(2, i)) time. 

(Proof) The correctness of this procedure is obvious. The time complexity is derived from the 

following three facts: (1) finding the median in  Si and partitioning into two sets take  0(1SiI) 

time [Blum+Floyd+Pratt+Rivest+Tarjan73], (2) the total size of the sets  Si in each iteration 

of Step 2 is IUI and (3) the number of the repetition of Step 2 is log A(2, i). ^

  Next, we consider the implementation of Step 2-(c). 

good condition to test whether a given subposet has an i 
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Procedure PARTITION-A(2, i)-SUBSETS 

Input: An element set U with weights w and a positive integer i. 

Output: Sets  Si  (j =  1,  •  •  • , A(2, i)) satisfying the condition in Step2-(b). 

Step 1: Put S1 := U and j 1. 

Step 2: Repeat the following (*1) and (*2) until j  = log  A(2,  i). 

    (*1)  Put  t = 1. Repeat the following  (1)1) and  (1)2) until t >  A(2,  i). 

 (61) If  1St' = 1 or 0, then put S,,A(2,0:= 0; otherwise find the                                                          `1- 23 

           median v in  St, put 

 S<  :  =  {v  1  vESt,w(v)<v}, 
 8=  :  =  {v  v  E  St,  w(v)  =  v},  

:  =  {v  vESt,w(v)>v}. 

           and partition  S= into two subsets  Si— and  S+= such that  1S:11 = 
 1:1_1  —  IS<1. Put  St  :=  u  s_= and St,  := S+=u S>.                                                                 1- 23 

                       A
2(32,1).        (1)2)  Put  t := t +— 

   (*2)  Put  j  j+  1. 

(End)

Figure 4: A procedure of MINIMAX-THRESHOLD(P,  k).

Lemma 3.  6  : For a poset P = (V, and a subset U of V, there exists an ideal I of size  k of 

P such that I  C U if and only if the following inequality holds: 

          U F(v) k. (3.5) 
 vEV—U 

(Proof) Suppose there is an ideal I  C U of size k of P. Let C be the set of all the upper 
neighbors of the elements of I on P. Then 

                U F(e)  --=  U F(e) D  U F(e). (3.6) 
               vEC vEV—I vEV—U 

Therefore, 

                V —  U F(e)  D V —  U  F(e)  =  I. (3.7) 
              vEV—U vEC 

Hence,  we have 

                V —  U F(e)  >  III = k. (3.8) 
                                    vEV—U 
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This means (3.5). 

 (=) Let W = V — UvEv--u F(v), then we have the facts that W  C U and W is an ideal of  P due 
to Lemma 3.  1  , and that  I  WI  > k from the assumption. These imply that the subposet P(W) has 

an ideal  I of size k. Thus, from Lemma 3.  2  ,  I is an ideal of size k of P such that  I  C W  C U.  ^ 

  The following result is an immediate consequence of the preceding lemma. 

Corollary 3.  7  : For sets  Si (j =  1,  •  •  • , A(2, i), A(2, i) + 1) obtained in Step 2-(a) and (b) of 

the algorithm MINIMAX-THRESHOLD and a positive integer k, we have 

           j* =  min{  /  I P(So  U  Si  U  •  •  • U  Sj) has an ideal of size k of P} (3.9) 

         = max / j U F(v) >  IVI — k . (3.10) 
 vesiusi+lu"•usA(2 ,ousA(2,0+1 

(Proof) From Lemma 3. 6 and V — (So U Si U  •  •  • U Sj) =  Sj+1 U  •  •  • U SA(2,i) U  SA(2,i)+1, 

           (3.9) = minj           {U F(v) < IV I —  k                                                          (3.11) 
                                    vEsj-Fiusi+2u•-•usA(2,ousA(2,0+1 

                = (3.10). 

                                                                     0 

  Due to Corollary 3. 7 we propose a procedure for finding f (see Figure 5). 

       Procedure  FIND-j* 

      Input: The sets  Si (j =  1,  •  •  • , A(2, i) + 1) and a positive integer k. 

      Output: The index  j* defined by (3.9). 

      Step 1: Put j := A(2, i)  + 1 and Q  :=  Uves  A(2,0+1  F(v). 

     Step 2: While  Ic21  <  Ivi — k do the following (*). 

          (*)  Put  j  :=  j-  1  and Q  :--=  Q  UU,,,si  F(v)• 

      Step 3: The current j is  j*. 

     (End) 

               Figure 5: A procedure of MINIMAX-THRESHOLD(P,  k)  .
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  Notice that all that we need in Step2-(*) is to identify the set  Lj,„Esj  F(v)  — Q =  UvEsj  F(v)  — 

                                                                  UfF(v)  I v E  Si±i U  •  •  • U  SA(2,i) U  SA(2,0+1} if we identify the set Q in the previous itera-

tion. The depth(breath)-first search  ([Ahuja+Magnanti+Orlin93]) works well for finding the set 

 Uv  F(v) —U             vesu•••usA(2 ,0+1 F(v) in Step 2-(*). To implement this search we attach each 
element label which have one of two states: unscanned or scanned. See Figure 6 and Figure 7 for 

an implementation of this search.

Procedure FIND-Q 

Input: A set  Si and the set Q(= UvEs.3+iu...usA(2'0+, F(v)) identified by label: 
    if label(v) = scanned, then v  E Q, otherwise v 0 Q. 

Output: The set  UvEsi F(v) — Q. 

Step 1: Put K  := 0 and L := 

Step 2: While L 0, do the following (*). 

    (*) Select an element v E L. Call DFS(v) and put K := K U  {u u  E 
       V, label(u) is changed in DFS(v)} and L L — {v}. 

Step 3: The current K is the set  UvEsi F(v) — Q. 

(End)

Figure 6: A procedure in the procedure  FIND-j*.

Lemma 3.  8  : The procedure  FIND-j* which uses the procedure FIND-Q with the procedure 

DFS(v) as a subroutine finds  j* in  O(m + n) time. 

(Proof) The procedure  FIND-j* computes  I  U  V  A(2,i)-1-1  F(V)  UvESA(2,i)USA(2,i)+1  F(V)  I • • • 
in turn, and finds j satisfying (3.10). Due to Corollary 3. 7 this j is  j*. The time complexity 

 O(m + n) is obtained from the following two facts: (1) if the procedure DFS(v) is executed for 

every element at most once, it requires  O(m + n) time in total since the total number of times 

the procedure DFS(v) tests whether label(v) is scanned or unscanned is at most the number of 

arcs of the Hasse diagram, and (2) for each element the procedure DFS(v) is executed at most 

once since the sets St  (t  =  j,  ,  A(2,i)  +  1) are disjoint. ^

Theorem  3.  9  : The algorithm MINIMAX-THRESHOLD(P, k) 

in  0((m + n) log* n) time.

computes a minimax ideal of P
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Procedure DFS(v) 

Input: A poset P with label and an element v. 

Output: The poset  P with label in which label(u) = scanned for all u E F(v) . 

Step 1: Put W := {v}. 

Step 2: While W 0, do the following (*). 

    (*) Select an element u E W. If label(u) = scanned, then put W  := 
        W -  {u}. If label(u) = unscanned, then put label(u) := scanned 

       and W :=  W  -  {u}  U  I  it  is  an upper neighbor  of 

(End)

Figure 7: A procedure in the procedure FIND-Q .

(Proof) In Step 2 each  of  (a) and (d) takes 0(n) time per iteration. From Lemma 3. 5 Step  2-

(b) requires  0(1U1 log A(2, i)) time per iteration and from Lemma 3. 8 Step 2-(c) needs  0(m  +n) 
time. Hence, it requires  O(IU'  log  A(2,  i)+m+n) time in the ith iteration of Step 2. Notice that 

 U   in the ith iteration. Thus,  OM  log  A(2, i) +  In + n)=0(m + n) since 

 lUI  log  A(2,  i)  < 1A(2
, i - 1)1 log A(2,i) < 2A(2, i - 1)log 2A(2'i-1) = 2n. (3.12) 

The number of iterations of Step 2 is  0(log*  n) . Therefore the over all time bound is 0((m + 

 n)  log*  n).  ^

Example: Consider Problem  Pk_minimax of k = 5 on the poset P represented by the Hasse 

diagram which is the same as Figure 2. The algorithm MINIMAX-THRESHOLD(P , 5) might 
execute as indicated as follows. At termination, we have a minimax ideal.

Input:

-145-



Step 1: A = 1,  µ = 9. 

Step 2: 

Iteration 1: 

(a) So = {V,5, V18}, U = {V1, V2, V3, V4, V6, V7, V8, V9, V10, V11) V12, V13, V14, V15, V16, V17},  S3 = 0. 

(b) =  Vg,  Vg,  V10,  V14,  V15,  V16,  V171,  S2 =  {V2,  V3,  V4,  V6,  V7,  V11,  V12,  V13}• 

 (c)  UvES2F(V)

 UvEv  FMI  =  17  <  IVI  -  k  =  13  j*  =  2. 
    0  0  • 

 •  •  0  :S2 

(d)  A  =  5,  =  9. 

Iteration 2: 

(a)  So =  V5,  V8,  V9,  V10,  V14)  V15,  V16,  V17,  V181, U =  {V2,  V3,  V4,  V6,  V7,  V11,  V12,  V13},  S5 =  O. 

(b) =  {V2,  V6}, S2 =  {V4,  V13}, S3 =  {v3,  V12},  84 =  {V7,  V11} 

 (C)  UvES4  F  (V)  UvES3US4F  (V)  UvES2US3US4F  (V)

 Uves4  F(01 <  IVI — k 
 j*  4. 

 (d)  =  =  5  13*  =  A  =  5. 

Step 3:

 UVES3US4  F(v)1 <  I  V  I— k  I  UvEs2uS3us4  F  (v)I  >  IV  I— k 

   i* 3.  j*  =  2.

Any ideal of size 5 of  P(—oo,  01 is a minimax ideal of P.
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