Algorithms for the Minimax \boldsymbol{k}-Ideal Problem

Toshio Nemoto
Faculty of Information and Communication
Bunkyo University
1100 Namegaya, Chigasaki 253, Japan
e-mail: nemoto@shonan.bunkyo.ac.jp

October, 1997

Abstract

Suppose we are given a poset(partially ordered set) $\mathcal{P}=(V, \preceq)$, a real-valued weight $w(e)$ associated with each element $e \in V$ and a positive integer k. We consider the problem which asks to find an ideal of size k of \mathcal{P} such that the maximum element weight in the ideal is the minimum for all ideals that can be constructed from \mathcal{P}. We call this problem the minimax k-ideal problem. In this paper we propose two fast algorithms: a greedy algorithm and a threshold algorithm. Combining these algorithms, we accomplish the best available bound $\mathrm{O}\left(\min \left\{n \log n+m,(m+n) \log ^{*} n\right\}\right)$ for this problem; the two bounds in this expression are, respectively, due to the greedy algorithm and the threshold algorithm, where $|V|=n$ and m is the number of arcs of the Hasse diagram representing the given poset. This ruesult shows that this problem does not have an $\Omega(n \log n+m)$ lower bound in spite of the fact that the minimum-range k-ideal problem, which is a general problem of the minimax k-ideal problem, has an $\Omega(n \log n+m)$ lower bound.

1. Introduction

A binary relation \preceq on a set V is called a partial order when it has the following properties:

- $\forall v \in V: v \preceq v$.
(Reflexivity)
- $v \preceq w, w \preceq v \Rightarrow v=w$.
(Antisymmetry)
- $u \preceq v, v \preceq w \Rightarrow u \preceq w$.

We call the pair (V, \preceq) a partially ordered set or a poset for short. For a poset $\mathcal{P}=(V, \preceq)$ a subset I of V is called an ideal of \mathcal{P} if $u \preceq v \in I$ implies $u \in I$. Posets and ideals appear in numerous application settings and in many forms (see, e.g., [Ahuja+Magnanti+Orlin93], [Picard76], [Picard+Queyranne82]). In this paper we consider the minimax k-ideal problem defined as follows:

$$
\begin{array}{r}
\mathrm{P}_{k \text {-minimax }}: \begin{array}{c}
\text { Minimize } \\
\max _{e \in I} w(e) \\
\text { subject to } I \in \mathcal{I}(\mathcal{P}) \\
\\
|I|=k
\end{array},
\end{array}
$$

where w is a weight function $w: V \rightarrow \mathbf{R}$ and assumed as $w(\emptyset)=-\infty$. When there is no possibility of confusion, an optimal ideal of Problem $\mathrm{P}_{k \text {-minimax }}$ is called a minimax ideal (of size k) of \mathcal{P}.

In general, for the minimax combinatorial optimization problems there are three main strategies (cf. [Pferschy95] which classifies into three main strategies for solving the bottleneck assignment problem): The first is based on a "greedy" principle - that is, it makes the cheapest choice at each step; the second is based on a "threshold" method which needs an efficient search method to find an optimal solution (see [Lawler76]); the third is a combination of the above two strategies (see [Punnen+Nair94] which succeeded in constructing an efficient algorithm for the bottleneck assignment problem by this strategy).

According to the first and the second general approaches we propose a greedy algorithm and a threshold algorithm for the minimax k-ideal problem. To the author's knowledge, no one has ever considered the minimax k-ideal problem. The greedy algorithm runs in $\mathrm{O}(n \log n+m)$ time and the threshold method can be implemented in $\mathrm{O}\left((m+n) \log ^{*} n\right)$ time, where $\log ^{*}$ is the iterated logarithm, defined by

$$
\begin{align*}
\log ^{(0)} x & =x \tag{1.2a}\\
\log ^{(i+1)} x & =\log \log ^{(i)} x, \tag{1.2b}\\
\log ^{*} x & =\min \left\{i \mid \log ^{(i)} x \leq 1\right\} . \tag{1.2c}
\end{align*}
$$

Notice that $\log ^{*} x$ is a very slowly growing function. For example, if $x=2^{65536}$, then $\log ^{*} x=5$. Therefore, the required time of the threshold method is shorter than that of the greedy algorithm when $m \ll\left(\frac{n}{2}\right)^{2}$.

Combining these algorithms, we accomplish the best available bound $\mathrm{O}(\min \{n \log n+m,(m+$ $\left.n) \log ^{*} n\right\}$) for this problem; the two bounds in this expression are, respectively, due to the greedy algorithm and the threshold algorithm. This time complexity shows that the minimax k-ideal problem does not have an $\Omega(n \log n+m)$ lower bound in spite of the fact that the minimum-range k-ideal problem, which is a general problem of the minimax k-ideal problem, has an $\Omega(n \log n+m)$ lower bound[Nemoto95].

2. A Greedy Algorithm

We propose an $\mathrm{O}(n \log n+m)$ algorithm for Problem $\mathrm{P}_{k \text {-minimax }}$ based on the greedy principle. The algorithm enlarges an element set J from an evident ideal \emptyset with the property that J is an ideal of \mathcal{P} keeping. For the set J the algorithm maintains the set C of all the upper neighbors of each element in J, which are candidates for inclusion in J. In choosing an element from the set
C, we use a greedy principle on weights. This approach yields an $\mathrm{O}(n \log n+m)$ time complexity. The algorithm is shown precisely in Figure 1.

Algorithm MINIMAX-GREEDY (\mathcal{P}, k)

Input: A poset $\mathcal{P}=(V, \preceq)$ and a positive integer k.
Output: A minimax ideal of size k of \mathcal{P}.
Step 1: Put $J:=\emptyset$.
Step 2: Repeat the following (*) k times.
(*) Put $C:=\{v \mid v$ is a minimal element of $\mathcal{P}(V-J)\}$. If $C=\emptyset$, then stop (there is no feasible ideal of \mathcal{P}); otherwise find a minimum-weight element \hat{v} in C and put $J:=J \cup\{\hat{v}\}$.

Step 3: The current J is a minimax ideal of size k.
(End)

Figure 1: A greedy algorithm for Problem $\mathrm{P}_{k \text {-minimax }}$.

The validity of this algorithm is shown below.
Lemma 2.1: The algorithm $\operatorname{MINIMAX-GREEDY}(\mathcal{P}, k)$ computes a minimax ideal of size k of a poset \mathcal{P}.
(Proof) For the ideal \hat{I} found by the algorithm MINIMAX-GREEDY (\mathcal{P}, k), let \hat{e} be a maximumweight element in \hat{I}, and let C^{\prime} and J^{\prime} be the set C and J, respectively, in the algorithm $\operatorname{MINIMAX}-\operatorname{GREEDY}(\mathcal{P}, k)$ just before \hat{v} is chosen. Similarly, for a minimax ideal I^{*} of size k, let v^{*} be a maximum-weight element in I^{*}. Suppose $w(\hat{v})>w\left(v^{*}\right)$. If $v^{*} \notin J^{\prime}$, i.e., $v^{*} \in V-J^{\prime}$, then $I^{*} \cap C^{\prime} \neq \emptyset$ from the fact that C^{\prime} is the set of all the minimal elements of $\mathcal{P}\left(V-J^{\prime}\right)$. Hence, I^{*} has an element $\tilde{v} \in I^{*} \cap C^{\prime}$ such that $w\left(v^{*}\right)<(w(\hat{v}) \leq) w(\tilde{v})$, contradicting the fact that e^{*} is the maximum weight element in I^{*}. If $v^{*} \in J^{\prime}$, then there exists an element $\tilde{v} \in C^{\prime} \cap I^{*}$ such that $w(\tilde{v}) \leq w\left(v^{*}\right)(<w(\hat{v}))$ because $\left|I^{*}\right|>\left|J^{\prime}\right|$ and e^{*} has the maximum weight in I^{*}. This contradicts the choice of \hat{v}. Consequently, we have $w(\hat{v})=w\left(v^{*}\right)$.

We now turn to the time complexity analysis. In Step 2-(*), it is not difficult to renew the set C by making use of the list of all the lower neighbors of each element in $\mathcal{P}(V-J)$. Notice that the list of all the lower neighbors is controlled in the complete list representation of the given Hasse diagram $G(\mathcal{P})$. Suppose C_{i} is the set C at the i th iteration, we can get $C_{i+1}=\left(C_{i}-\{\hat{v}\}\right) \cup\{v \mid$
the list of arcs $\delta^{+} v$ has just become empty by removing \hat{v} from $\left.G(\mathcal{P}(V-J))\right\}$. Finding C_{1} and identifying new elements added to C_{i+1} at the end of the i th iteration, require $\mathrm{O}(m+n)$ time in the whole of the algorithm. By having the heap data structure (see [Ahuja+Magnanti+Orlin93]) for C, finding a minimum-weight element \hat{v} in C, inserting new members to C and deleting $\hat{\imath}$ from C are carried out in $\mathrm{O}(\log n)$, respectively. Since each operation is done for an element at most once, it takes $\mathrm{O}(n \log n)$ time. In total, this algorithm requires $\mathrm{O}(n \log n+m)$ time. Consequently, we have the following theorem.

Theorem 2.2: The algorithm MINIMAX-GREEDY (\mathcal{P}, k) computes a minimax ideal of size k of \mathcal{P} in $\mathrm{O}(n \log n+m)$.

Example: Consider Problem $\mathrm{P}_{k \text {-minimax }}$ of $k=5$ on the poset \mathcal{P} represented by the Hasse diagram shown in Figure 2. The weight of each element is attached at the lower left of the element. The algorithm MINIMAX-GREEDY $(\mathcal{P}, 5)$ might execute as indicated in Table 1. At termination, we have a minimax ideal $\left\{v_{1}, v_{4}, v_{8}, v_{13}, v_{14}\right\}$.

Figure 2: The Hasse diagram $G(\mathcal{P})$ representing a poset $\mathcal{P}=$ (V, \preceq) with the weights.

3. A Threshold Algorithm

Combining an efficient search method and a threshold method, we describe the other algorithm for the minimax cardinality-restricted ideal problem. Basically, the framework of the algorithm described here is the same as that of the algorithm proposed by Gabow and Tarjan [Gabow+Tarjan88] for the bottleneck spanning tree problem. However, to make use of the framework it is necessary to give some new ideas.

Table 1: The algorithm $\operatorname{MINIMAX-GREEDY}(\mathcal{P}, 5)$ applied to the poset shown in Figure 2.

Iter.	C	\hat{v}	J
Step 1			\emptyset
Step 2 1	$\left\{v_{1}, v_{2}, v_{3}\right\}$	v_{1}	$\left\{v_{1}\right\}$
2	$\left\{v_{2}, v_{3}, v_{4}\right\}$	v_{4}	$\left\{v_{1}, v_{4}\right\}$
3	$\left\{v_{2}, v_{3}, v_{8}\right\}$	v_{8}	$\left\{v_{1}, v_{4}, v_{8}\right\}$
4	$\left\{v_{2}, v_{3}, v_{13}, v_{14}\right\}$	v_{14}	$\left\{v_{1}, v_{4}, v_{8}, v_{14}\right\}$
5	$\left\{v_{2}, v_{3}, v_{13}\right\}$	v_{13}	$\left\{v_{1}, v_{4}, v_{8}, v_{14}, v_{13}\right\}$

First we show two lemmas which play a fundamental role in the threshold approach for the ideal problems.

Lemma 3.1: For a poset $\mathcal{P}=(V, \preceq)$ and a subset U of V let

$$
\begin{equation*}
W=V-\bigcup_{v \in U} F(v) \tag{3.1}
\end{equation*}
$$

where $F(v)=\{w \mid w \in V, v \preceq w\}$ which is called the principal filter generated by v. Then $W \subseteq V-U$ and W is an ideal of \mathcal{P}.
(Proof) It is clear that $W \subseteq V-U$. Suppose W is not an ideal of \mathcal{P}, that is, there exist two elements $w \in W$ and $u \notin W\left(u \in \bigcup_{v \in U} F(v)\right)$ such that $u \preceq w$ on \mathcal{P}. Since $w \in F(u) \subseteq \bigcup_{v \in U} F(v)$, we have $w \notin W$, contradicting the fact $w \in W$.

Lemma 3. 2: For a poset $\mathcal{P}=(V, \preceq)$ let I be an ideal of \mathcal{P}. Then, for a subset $U \subseteq V, U$ is an ideal of the subposet $\mathcal{P}(I)$ if and only if U is an ideal of \mathcal{P} and $U \subseteq I$.
(Proof) (\Rightarrow) Suppose U is not an ideal of \mathcal{P}. Hence, there exist two elements u and v such that $u \preceq v, v \in U$ and $u \notin U$. If $u \in I-U$, then it contradicts the fact that U is an ideal of $\mathcal{P}(I)$. If $u \in V-I$, then it contradicts the fact that I is an ideal of \mathcal{P}. Therefore, U is an ideal of \mathcal{P}. (\Leftarrow) Suppose U is not an ideal of $\mathcal{P}(I)$, i.e., there exist two elements u and v such that $u \preceq v$, $v \in U$ and $u \notin U$, i.e., $v \in U$ and $u \in I-U \subseteq V-U$. This contradicts that U is an ideal of \mathcal{P}.

For any real value β, let $H(\beta)=\{e \mid e \in E, w(e)>\beta\}$. Then, the set

$$
\begin{equation*}
E-\cup_{e \in H(\beta)} F(e) \tag{3.2}
\end{equation*}
$$

is an ideal of \mathcal{P} due to Lemma 3.1. We abbreviate the subposet $\mathcal{P}\left(E-\cup_{e \in H(\beta)} F(e)\right)$ induced by (3.2) to $\mathcal{P}(-\infty, \beta]$. Now, let

$$
\begin{equation*}
\beta^{*}=\min \{\beta \mid \text { there is an ideal of size } k \text { of } \mathcal{P}(-\infty, \beta]\} \tag{3.3}
\end{equation*}
$$

Then, we have the following lemma.
Lemma 3. 3: Any ideal of size k of $\mathcal{P}\left(-\infty, \beta^{*}\right]$ is a minimax ideal of size k of \mathcal{P}.
(Proof) Suppose that there exists an ideal I^{\prime} of size k of \mathcal{P} such that $\max \left\{w(e) \mid e \in I^{\prime}\right\}<\beta^{*}$. Then, I^{\prime} is also the ideal of $\mathcal{P}\left(-\infty, \beta^{*}\right]$ from the fact that $I^{\prime} \subseteq E-\cup_{e \in H\left(\beta^{*}\right)} F(e)$ and Lemma 3. 2 . This contradicts the minimality of β^{*}.

To find a minimax ideal of size k of \mathcal{P} it suffices to compute β^{*} since an ideal of size k of $\mathcal{P}\left(-\infty, \beta^{*}\right]$ can be found in $\mathrm{O}(m+n)$ time by the breath(depth)-first search method.

We find β^{*} by repeatedly splitting and narrowing the interval of possible values of β. The number of intervals which the current interval is split into is given by a function $A(2, i):\{1,2, \cdots\} \rightarrow$ \mathbf{Z}_{+}defined by

$$
\begin{align*}
& A(2,1)=2 \tag{3.4a}\\
& A(2, i)=2^{A(2, i-1)} \tag{3.4b}
\end{align*}
$$

This is the Ackermann's function with a slight change (see [Tarjan83] for Ackermann's function). See Figure 3 for the description of a threshold algorithm for Problem $\mathrm{P}_{k \text {-minimax }}$.
Here, for any real number $x,\lfloor x\rfloor$ denotes the maximum integer less than or equal to x, and $\lceil x\rceil$ denotes the minimum integer larger than or equal to x. Though it is not necessary to construct the set $S_{A(2, i)+1}$ in Step 2-(a) of the algorithm MINIMAX-THRESHOLD (\mathcal{P}, k), we need it to implement this algorithm efficiently. The efficient implementation will be described later. The validity of the above algorithm is shown below.

Theorem 3. 4: The algorithm MINIMAX-THRESHOLD (\mathcal{P}, k) computes a minimax ideal correctly.
(Proof) This algorithm terminates in a finite number of iterations since the cardinality of the finite set U is strictly decreasing in Step 2-(d). It is clear $\beta^{*}=\lambda$ when $\lambda=\mu$. From the property that $\mathcal{P}\left(S_{0} \cup \cdots \cup S_{j}\right)$ has an ideal of size k of \mathcal{P} in Step 2-(c), we have $\beta^{*}=\lambda(=\min \{w(v) \mid v \in$ $\left.U\}=\min \left\{w(v) \mid v \in U_{1}\right\}\right)$ if $j=0$.

We now consider an efficient implementation of this algorithm and the time complexity analysis. It is easy to implement Step 1, Step 2-(a) and Step 2-(d). Therefore the remaining part in this section is devoted to the implementation of Step 2-(b) and (c).

Algorithm MINIMAX-THRESHOLD (\mathcal{P}, k)

Input: A poset $\mathcal{P}=(V, \underline{\preceq})$ and a positive integer k.
Output: A minimax ideal of size k of \mathcal{P}.
Step 1: Put $\lambda:=\min \{w(v) \mid v \in V\}, \mu:=\max \{w(v) \mid v \in V\}$ and $i:=1$.
Step 2: Repeat the following (a),(b),(c) and (d).
(a) Let $S_{0}:=\{v \mid v \in V, w(v) \leq \lambda\}$ and $U:=\{v \mid v \in V, \lambda<w(v) \leq \mu\}$. (Let $S_{A(2, i)+1}:=\{v \mid v \in V, \mu<w(v)\}$.)
(b) Partition U into $A(2, i)$ subsets $S_{1}, S_{2}, \cdots, S_{A(2, i)}$, each of size $\left\lfloor\frac{|U|}{A(2, i)}\right\rfloor$ or $\left\lceil\frac{|U|}{A(2, i)}\right\rceil$, such that if $v \in S_{j}$ and $u \in S_{j+1}(j=1, \cdots, A(2, i)-1)$, then $w(v) \leq w(u)$.
(c) Find $j^{*}=\min \left\{j \mid \mathcal{P}\left(S_{0} \cup S_{1} \cup \cdots \cup S_{j}\right)\right.$ has an ideal of size k of $\left.\mathcal{P}\right\}$.
(d) Put $\lambda:=\min \left\{w(v) \mid v \in S_{j^{*}}\right\}, \mu:=\max \left\{w(v) \mid v \in S_{j^{*}}\right\}$ and $i:=i+1$. If $j^{*}=0$ or $\lambda=\mu$, then put $\beta^{*}:=\lambda$ and stop.

Step 3: Find an ideal of size k of $\mathcal{P}\left(-\infty, \beta^{*}\right]$. It is a minimax ideal of size k of \mathcal{P}.
(End)

Figure 3: A threshold algorithm for Problem $\mathrm{P}_{k \text {-minimax }}$.

First, we consider the implementation of Step 2-(b). It can be carried out by finding the median: Split U into a lower half and an upper half, then split each half into halves and so on. See Figure 4 which precisely describes the procedure to implement Step 2-(b). The technique used in (b1) of the procedure PARTITION- $A(2, i)$-SUBSETS is known as the procedure select [Aho+Hopcroft+Ullman83].

Lemma 3. 5 : The procedure PARTITION- $A(2, i)$-SUBSETS implements the required work in Step 2-(b) in $\mathrm{O}(|U| \log A(2, i))$ time.
(Proof) The correctness of this procedure is obvious. The time complexity is derived from the following three facts: (1) finding the median in S_{j} and partitioning into two sets take $\mathrm{O}\left(\left|S_{j}\right|\right)$ time [Blum+Floyd+Pratt+Rivest+Tarjan73], (2) the total size of the sets S_{j} in each iteration of Step 2 is $|U|$ and (3) the number of the repetition of Step 2 is $\log A(2, i)$.

Next, we consider the implementation of Step 2-(c). The following lemma demonstrates a good condition to test whether a given subposet has an ideal of size k.

Procedure PARTITION- $A(2, i)$-SUBSETS

Input: An element set U with weights w and a positive integer i.
Output: Sets $S_{j}(j=1, \cdots, A(2, i))$ satisfying the condition in Step2-(b).
Step 1: Put $S_{1}:=U$ and $j:=1$.
Step 2: Repeat the following ($* 1$) and ($* 2$) until $j=\log A(2, i)$.
($* 1$) Put $t=1$. Repeat the following (b1) and (b2) until $t>A(2, i)$.
(b1) If $\left|S_{t}\right|=1$ or 0 , then put $S_{t+\frac{A(2, i)}{2 j}}:=\emptyset$; otherwise find the median ν in S_{t}, put

$$
\begin{aligned}
S^{<} & :=\left\{v \mid v \in S_{t}, w(v)<\nu\right\}, \\
S^{-} & :=\left\{v \mid v \in S_{t}, w(v)=\nu\right\}, \\
S^{>} & :=\left\{v \mid v \in S_{t}, w(v)>\nu\right\} .
\end{aligned}
$$

and partition $S^{=}$into two subsets $S_{-}^{=}$and $S_{+}^{=}$such that $\left|S_{-}^{\equiv}\right|=$ $\left\lfloor\frac{S_{t}}{2}\right\rfloor-\left|S^{<}\right|$. Put $S_{t}:=S^{<} \cup S_{-}^{=}$and $S_{t+\frac{A(2, i)}{2 j}}:=S_{+}^{=} \cup S^{>}$.
(b2) Put $t:=t+\frac{A(2, i)}{2^{j-1}}$.
(*2) Put $j:=j+1$.
(End)

Figure 4: A procedure of MINIMAX-THRESHOLD (\mathcal{P}, k).

Lemma 3.6: For a poset $\mathcal{P}=(V, \preceq)$ and a subset U of V, there exists an ideal I of size k of \mathcal{P} such that $I \subseteq U$ if and only if the following inequality holds:

$$
\begin{equation*}
\left|\bigcup_{v \in V-U} F(v)\right| \leq|V|-k \tag{3.5}
\end{equation*}
$$

(Proof) (\Rightarrow) Suppose there is an ideal $I \subseteq U$ of size k of \mathcal{P}. Let C be the set of all the upper neighbors of the elements of I on \mathcal{P}. Then

$$
\begin{equation*}
\bigcup_{v \in C} F(e)=\bigcup_{v \in V-I} F(e) \supseteq \bigcup_{v \in V-U} F(e) . \tag{3.6}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
V-\bigcup_{v \in V-U} F(e) \supseteq V-\bigcup_{v \in C} F(e)=I . \tag{3.7}
\end{equation*}
$$

Hence, we have

$$
\begin{equation*}
\left|V-\bigcup_{v \in V-U} F(e)\right| \geq|I|=k \tag{3.8}
\end{equation*}
$$

This means (3.5).
(\Leftrightarrow) Let $W=V-\bigcup_{v \in V-U} F(v)$, then we have the facts that $W \subseteq U$ and W is an ideal of \mathcal{P} due to Lemma 3.1, and that $|W| \geq k$ from the assumption. These imply that the subposet $\mathcal{P}(W)$ has an ideal I of size k. Thus, from Lemma 3.2, I is an ideal of size k of \mathcal{P} such that $I \subseteq W \subseteq U$.

The following result is an immediate consequence of the preceding lemma.
Corollary 3.7: For sets $S_{j}(j=1, \cdots, A(2, i), A(2, i)+1)$ obtained in Step 2-(a) and (b) of the algorithm MINIMAX-THRESHOLD and a positive integer k, we have

$$
\begin{align*}
j^{*} & =\min \left\{j \mid \mathcal{P}\left(S_{0} \cup S_{1} \cup \cdots \cup S_{j}\right) \text { has an ideal of size } k \text { of } \mathcal{P}\right\} \tag{3.9}\\
& =\max \left\{j| |_{v \in S_{j} \cup S_{j+1} \cup \ldots \cup S_{A(2, i)} \cup S_{A(2, i)+1}} F(v)|>|V|-k\} .\right. \tag{3.10}
\end{align*}
$$

(Proof) From Lemma 3.6 and $V-\left(S_{0} \cup S_{1} \cup \cdots \cup S_{j}\right)=S_{j+1} \cup \cdots \cup S_{A(2, i)} \cup S_{A(2, i)+1}$,

$$
\begin{align*}
(3.9) & =\min \left\{j| |_{v \in S_{j+1} \cup S_{j+2} \cup \cdots \cup S_{A(2, i)} \cup S_{A(2, i)+1}} F(v)|\leq|V|-k\}\right. \tag{3.11}\\
& =(3.10) .
\end{align*}
$$

Due to Corollary 3.7 we propose a procedure for finding j^{*} (see Figure 5).

Procedure FIND- j^{*}
Input: The sets $S_{j}(j=1, \cdots, A(2, i)+1)$ and a positive integer k.
Output: The index j^{*} defined by (3.9).
Step 1: Put $j:=A(2, i)+1$ and $Q:=\bigcup_{v \in S_{A(2, i)+1}} F(v)$.
Step 2: While $|Q| \leq|V|-k$ do the following (*).
(*) Put $j:=j-1$ and $Q:=Q \cup \bigcup_{v \in S_{j}} F(v)$.
Step 3: The current j is j^{*}.
(End)

Figure 5: A procedure of MINIMAX-THRESHOLD (\mathcal{P}, k).

Notice that all that we need in Step2-(*) is to identify the set $\bigcup_{v \in S_{j}} F(v)-Q=\bigcup_{v \in S_{j}} F(v)-$ $\bigcup\left\{F(v) \mid v \in S_{j+1} \cup \cdots \cup S_{A(2, i)} \cup S_{A(2, i)+1}\right\}$ if we identify the set Q in the previous iteration. The depth(breath)-first search ([Ahuja+Magnanti+Orlin93]) works well for finding the set $\bigcup_{v \in S_{j}} F(v)-\bigcup_{v \in S_{j+1} \cup \ldots \cup S_{A(2, i)+1}} F(v)$ in Step 2-(*). To implement this search we attach each element label which have one of two states: unscanned or scanned. See Figure 6 and Figure 7 for an implementation of this search.

Procedure FIND-Q

Input: A set S_{j} and the set $Q\left(=\bigcup_{v \in S_{j+1} \cup \ldots \cup S_{A(2, i)+1}} F(v)\right)$ identified by label: if $\operatorname{label}(v)=$ scanned, then $v \in Q$, otherwise $v \notin Q$.

Output: The set $\bigcup_{v \in S_{j}} F(v)-Q$.
Step 1: Put $K:=\emptyset$ and $L:=S_{j}$.
Step 2: While $L \neq \emptyset$, do the following (*).
(*) Select an element $v \in L$. Call $\operatorname{DFS}(v)$ and put $K:=K \cup\{u \mid u \in$ $V, \operatorname{label}(u)$ is changed in $\operatorname{DFS}(v)\}$ and $L:=L-\{v\}$.

Step 3: The current K is the set $\bigcup_{v \in S_{j}} F(v)-Q$.
(End)

Figure 6: A procedure in the procedure FIND- j^{*}.

Lemma 3.8: The procedure FIND- j^{*} which uses the procedure FIND-Q with the procedure $\mathrm{DFS}(v)$ as a subroutine finds j^{*} in $\mathrm{O}(m+n)$ time.
(Proof) The procedure FIND- j^{*} computes $\left|\cup_{v \in S_{A(2, i)+1}} F(v)\right|,\left|\cup_{v \in S_{A(2, i)} \cup S_{A(2, i)+1}} F(v)\right|, \cdots$, in turn, and finds j satisfying (3.10). Due to Corollary 3.7 this j is j^{*}. The time complexity $\mathrm{O}(m+n)$ is obtained from the following two facts: (1) if the procedure $\operatorname{DFS}(v)$ is executed for every element at most once, it requires $\mathrm{O}(m+n)$ time in total since the total number of times the procedure $\operatorname{DFS}(v)$ tests whether label (v) is scanned or unscanned is at most the number of arcs of the Hasse diagram, and (2) for each element the procedure $\operatorname{DFS}(v)$ is executed at most once since the sets $S_{t}(t=j, \ldots, A(2, i)+1)$ are disjoint.

Theorem 3. 9: The algorithm MINIMAX-THRESHOLD (\mathcal{P}, k) computes a minimax ideal of \mathcal{P} in $\mathrm{O}\left((m+n) \log ^{*} n\right)$ time.

Procedure DFS(v)

Input: A poset \mathcal{P} with label and an element v.
Output: The poset \mathcal{P} with label in which label $(u)=$ scanned for all $u \in F(v)$.
Step 1: Put $W:=\{v\}$.
Step 2: While $W \neq \emptyset$, do the following (*).
(*) Select an element $u \in W$. If $\operatorname{label}(u)=$ scanned, then put $W:=$ $W-\{u\}$. If $\operatorname{label}(u)=$ unscanned, then put $\operatorname{label}(u):=$ scanned and $W:=W-\{u\} \cup\{\hat{u} \mid \hat{u}$ is an upper neighbor of $u\}$:
(End)

Figure 7: A procedure in the procedure FIND- Q.
(Proof) In Step 2 each of (a) and (d) takes $\mathrm{O}(n)$ time per iteration. From Lemma 3. 5 Step 2(b) requires $\mathrm{O}(|U| \log A(2, i))$ time per iteration and from Lemma 3. 8 Step 2-(c) needs $\mathrm{O}(m+n)$ time. Hence, it requires $\mathrm{O}(|U| \log A(2, i)+\mathrm{m}+\mathrm{n})$ time in the i th iteration of Step 2. Notice that $|U| \leq\left\lceil\frac{n}{A(2, i-1)}\right\rceil$ in the i th iteration. Thus, $\mathrm{O}(|U| \log A(2, i)+m+n)=\mathrm{O}(m+n)$ since

$$
\begin{equation*}
|U| \log A(2, i) \leq\left\lceil\frac{n}{A(2, i-1)}\right\rceil \log A(2, i) \leq 2 \frac{n}{A(2, i-1)} \log 2^{A(2, i-1)}=2 n \tag{3.12}
\end{equation*}
$$

The number of iterations of Step 2 is $\mathrm{O}\left(\log ^{*} n\right)$. Therefore the over all time bound is $\mathrm{O}((m+$ $n) \log ^{*} n$).

Example: Consider Problem $\mathrm{P}_{k \text {-minimax }}$ of $k=5$ on the poset \mathcal{P} represented by the Hasse diagram which is the same as Figure 2. The algorithm MINIMAX-THRESHOLD $(\mathcal{P}, 5)$ might execute as indicated as follows. At termination, we have a minimax ideal.

Input:

Step 1: $\lambda=1, \mu=9$.

Step 2:

Iteration 1:

(a) $S_{0}=\left\{v_{5}, v_{18}\right\}, U=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{11}, v_{12}, v_{13}, v_{14}, v_{15}, v_{16}, v_{17}\right\}, S_{3}=\emptyset$.
(b) $S_{1}=\left\{v_{1}, v_{8}, v_{9}, v_{10}, v_{14}, v_{15}, v_{16}, v_{17}\right\}, S_{2}=\left\{v_{2}, v_{3}, v_{4}, v_{6}, v_{7}, v_{11}, v_{12}, v_{13}\right\}$.
(c)
$\cup_{v \in S_{2}} F(v)$

$$
\left|\cup_{v \in V} F(v)\right|=17 \leq|V|-k=13 \Rightarrow j^{*}=2
$$

(d) $\lambda=5, \mu=9$.

Iteration 2:

(a) $S_{0}=\left\{v_{1}, v_{5}, v_{8}, v_{9}, v_{10}, v_{14}, v_{15}, v_{16}, v_{17}, v_{18}\right\}, U=\left\{v_{2}, v_{3}, v_{4}, v_{6}, v_{7}, v_{11}, v_{12}, v_{13}\right\}, S_{5}=\emptyset$.
(b) $S_{1}=\left\{v_{2}, v_{6}\right\}, S_{2}=\left\{v_{4}, v_{13}\right\}, S_{3}=\left\{v_{3}, v_{12}\right\}, S_{4}=\left\{v_{7}, v_{11}\right\}$.
(c)

$$
\left|\cup_{v \in S_{4}} F(v)\right|<|V|-k
$$

(d) $\lambda=\mu=j^{*} \neq 4$.

$$
\begin{array}{cc}
\left|\cup_{v \in S_{3} \cup S_{4}} F(v)\right|<|V|-k & \mid \cup_{v \in S_{2} \cup S_{3} \cup S_{4} F(v)|\geq|V|-k} \\
\Rightarrow j^{*} \neq 3 . & \Rightarrow j^{*}=2 .
\end{array}
$$

(d) $\lambda=\mu=5 \Rightarrow \beta^{*}=\lambda=5$.

Step 3:

Any ideal of size 5 of $\mathcal{P}\left(-\infty, \beta^{*}\right]$ is a minimax ideal of \mathcal{P}.

References

[Aho+Hopcroft+Ullman83] A. V. Aho, J. E. Hopcroft and J. D. Ullman: Data structures and algorithms (Addison-Wesley, MA, 1983).
[Ahuja+Magnanti+Orlin93] R. K. Ahuja, T. L. Magnanti and J. B. Orlin: Network Flows: Theory, Algorithms, and Applications (Prentice Hall, New York, 1993).
[Blum+Floyd+Pratt+Rivest+Tarjan73] M. Blum, P. Floyd, V. Pratt, R. L. Rivest and R. E. Tarjan: Time bounds for selection. Journal of Computer and System Sciences 7 (1973) 448-461.
[Gabow+Tarjan88] H. N. Gabow and R. T. Tarjan: Algorithms for two bottleneck optimization problems. Journal of Algorithms 9 (1988) 411-417.
[Lawler76] E. L. Lawler: Combinatorial optimization: Networks and Matroids (Holt, Reinehart and Winston, New York, 1976).
[Nemoto95] T. Nemoto: An efficient algorithm for the minimum-range ideal problem: In Optimization - Modeling and Algorithm - 7, (The Institute of Statistical Mathematics Cooperative Research Report 77, Tokyo, 1995), pp.26-41.
[Pferschy95] U. Pferschy: Solution methods and computational investigations for the linear bottleneck assignment problem. Technical Report 22-1995, Institute of Mathematics, University of Technology Graz, Austria, (1995).
[Picard76] J. C. Picard: Maximal closure of a graph and applications to combinatorial problems. Management Science 22 (1976) 1268-1272.
[Picard+Queyranne82] J. C. Picard and M. Queyranne: Selected applications on minimum cuts in networks. Information Systems and Operational Research 20 (1982) 394-422.
[Punnen+Nair94] A. P. Punnen and K. P. K. Nair: Improved complexity bound for the maximum cardinality bottleneck bipartite matching problem. Discrete Applied Mathematics 55 (1994) 91-93.
[Tarjan83] R. E. Tarjan: Data Structures and Network Algorithm (SIAM, Philadelphia, PA, 1983).

