THE ROLE OF MgO FOR USE IN ANTACID

Tsutomu Izumikawa

Introduction

It is generally explained for antacid applied to gastro that a mild antacid effect can be obtained as a result of $Mg(HCO_8)_2$ formed by addition of MgO to NaHCO_8. Now a consideration is made to discuss the effect of chemical equilibrium between gastric juice and NaHCO_8/MgO being ingested together.

Discussion

gas

$NaHCO_3 + HCI \rightarrow NaCl + H_2O + CO_2^{\uparrow}$

an an an tha an an thair an th

(gas forms partially into aqueous solution)

.

 CO_2 gas liberates mostly out of the reaction phase, which results in non-equilibrium with the above-mentioned reaction.

In the presence of excess NaHCO3, the reaction is continued as long as HCl is consumed.

(The reaction velocity is extremely rapid because of an ionic reaction.)

Take, for example, 0.01 mol NaHCO₃ excessively given against 100cc gastric juice, the concentration of HCl becomes 0.1 mol/1.

If NaHCO₃ is then 100% dissociated, Na's ratio is given by 0.1 mol/1 which converts to:-

 $pH = -log(H^+) = 13$ (OH⁻) = 0.1 mol/1

When, on the other hand, MgO is dissolved in water, one part of which is slightly dissociated in accordance with:---

 $\begin{array}{cccc} MgO & \longrightarrow MgO & \longrightarrow Mg^{++} + 0^{--} + 2H^{+} + 20H^{-} & \longrightarrow Mg^{++} + 20H^{-} \\ (precipitated) & (ionized) \\ & (dissolved in water as molecule state) \end{array}$

And solubility product of Mg(OH)₂ at 18°C being;

 $(Mg^{++})(OH^{-})^{2} = 1.2 \times 10^{-11}$

The consequent result is obtaind as below.

 $(Mg^{++}) = \sqrt[3]{(4.946)^3 \times (10^{-3})^3} = 4.946 \times 10^{-3} \Rightarrow 5 \times 10^{-3} \text{ mol}/1$

The value of $(OH^-)=0.1 \text{ mol}/1$ remains unchanged, when considering form the presence of excess NaHCO₃ given by the above.

Consequently, (Mg⁺⁺) is reduced by the equilibrium with this ion to:-

(15)

研究紀要 第21集

 $(Mg^{++})=1.2\times10^{-11}/0.1\times0.1=1.2\times10^{-11}/10^{-2}=1.2\times10^{-9}$

and forms precipitant due to the dissolved molecule being already saturated.

Quantitatively, (Mg⁺⁺) under this state becomes reduced approximately a hundred-thousandth.

The precipitant obtained thereby is supposed to be Mg(OH)₂, not MgO.

On account of existance of (OH^-) produced by NaHCO₃, the concentration of (Mg^{++}) becomes trace and presence of MgCl₂ could be retained within a degree of this concentration. A simultaneous result will also be obtained with MgCO₃.

[Mg(HCO₃)₂ is not tabled, nor is Ca (HCO₃)₂ mentioned either, these are probably of unstable

matters.]

Even if the degree of dissociation of NaHCO₃ were considered to be at 10%, the resultant value alters only to $(Mg^{++})=1.2\times10^{-7}$ which provides the meaning of slight change through-out the arguments of the correlation between these chemical equilibriums.

Consequently, these observations, from which there derive the facts that scarce change of pH is shown in the presence of excess NaHCO₃ and no chemical reaction can be considered, seem to be rather of no use if MgO is not taken into the other phase of consideration. The formation of $Mg(HCO_3)_2$ is not expected, but the role of MgO with NaHCO₃ will not always deny the fact of medical effect.