Balanced Bowtie and Trefoil Decomposition of Symmetric Complete Tripartite Digraphs

Kazuhiko USHIO

Department of Industrial Engineering Faculty of Science and Technology Kinki University Osaka 577-8502, JAPAN E-mail:ushio@is.kindai.ac.jp Tel:+81-6-6721-2332 (ext. 4615) Fax:+81-6-6730-1320

Abstract

First, we show that the necessary and sufficient condition for the existence of a balanced bowtie decomposition of the symmetric complete tripartite digraph K_{n_1,n_2,n_3}^* is $n_1 = n_2 = n_3 \equiv 0 \pmod{3}$. Next, we show that the necessary and sufficient condition for the existence of a balanced trefoil decomposition of the symmetric complete tripartite digraph K_{n_1,n_2,n_3}^* is $n_1 = n_2 = n_3 \equiv 0 \pmod{3}$.

Keywords: Balanced bowtie decomposition; Balanced trefoil decomposition; Symmetric complete tripartite digraph

1. Introduction

Let K_{n_1,n_2,n_3}^* denote the symmetric complete tripartite digraph with partite sets V_1 , V_2 , V_3 of n_1 , n_2 , n_3 vertices each. The t-foil (or the t-windmill) is a graph of t edge-disjoint triangles with a common vertex and the common vertex is called the center of the t-foil. In particular, the 2-foil and the 3-foil are called the bowtie and the trefoil, respectively. When K_{n_1,n_2,n_3}^* is decomposed into edge-disjoint sum of t-foils, we say that K_{n_1,n_2,n_3}^* has a t-foil decomposition. Moreover, when every vertex of K_{n_1,n_2,n_3}^* appears in the same number of t-foils, we say that K_{n_1,n_2,n_3}^* has a balanced t-foil decomposition and this number is called the replication number.

In Section 2, it is shown that the necessary and sufficient condition for the existence of a balanced bowtie decomposition of K_{n_1,n_2,n_3}^* is $n_1 = n_2 = n_3 \equiv 0 \pmod{3}$.

In Section 3, it is shown that the necessary and sufficient condition for the existence of a balanced trefoil decomposition of K_{n_1,n_2,n_3}^* is $n_1 = n_2 = n_3 \equiv 0 \pmod{9}$.

Department of Industrial Engineering, Faculty of Science and Technology, Kinki University, Osaka 577-8502, JAPAN. E-mail:ushio@is.kindai.ac.jp Tel:+81-6-6721-2332 (ext. 4615) Fax:+81-6-6730-1320

Let K_n denote the complete graph of *n* vertices. And let C_3 be the cycle on 3 vertices. Then it is a well-known result that K_n has a C_3 - decomposition if and only if $n \equiv 1$ or 3 (mod 6). This decomposition is known as a Steiner triple system. See Wallis[2, Chapter 12 Triple Systems]. Horák and Rosa[1] proved that K_n has a bowtie-decomposition if and only if $n \equiv 1$ or 9 (mod 12). This decomposition is known as a bowtie system.

2. Balanced bowtie decomposition of K_{n_1,n_2,n_3}^*

Notation. We denote a bowtie passing through $v_1 - v_2 - v_3 - v_1 - v_4 - v_5 - v_1$ by $\{(v_1, v_2, v_3), (v_1, v_4, v_5)\}$.

We have the following theorem.

Theorem 1. If K_{n_1,n_2,n_3}^* has a balanced bowtie decomposition, then $n_1 = n_2 = n_3 \equiv 0 \pmod{3}$.

Proof. Suppose that K_{n_1,n_2,n_3}^* has a balanced bowtie decomposition. Let b be the number of bowties and r be the replication number. Then $b = (n_1n_2 + n_1n_3 + n_2n_3)/3$ and $r = 5(n_1n_2 + n_1n_3 + n_2n_3)/3(n_1 + n_2 + n_3)$. Among r bowties having vertex v in V_i , ler r_{ij} be the number of bowties in which the centers are in V_j . Then $r_{11} + r_{12} + r_{13} = r_{21} + r_{22} + r_{23} = r_{31} + r_{32} + r_{33} = r$. Counting the number of vertices adjacent to vertex v in V_1 , $2r_{11} + r_{12} + r_{13} = 2n_2$ and $2r_{11} + r_{12} + r_{13} = 2n_3$. Counting the number of vertices adjacent to vertex v in V_2 , $r_{21} + 2r_{22} + r_{23} = 2n_1$ and $r_{21} + 2r_{22} + r_{23} = 2n_3$. Counting the number of vertices adjacent to vertex v in V_3 , $r_{31} + r_{32} + 2r_{33} = 2n_1$ and $r_{31} + r_{32} + 2r_{33} = 2n_2$. Therefore, $n_1 = n_2 = n_3$. Put $n_1 = n_2 = n_3 = n$. Then $b = n^2$, r = 5n/3, $r_{11} = r_{22} = r_{33} = n/3$ and $r_{12} + r_{13} = r_{21} + r_{23} = r_{31} + r_{32} = 4n/3$. Thus $n \equiv 0 \pmod{3}$. Therefore, $n_1 = n_2 = n_3 \equiv 0 \pmod{3}$ is necessary.

Let $\vec{K}_{s,s,s}$ denote the complete tripartite digraph with partite sets V_1 , V_2 , V_3 of s vertices each such that the directions of edges are directed away from V_1 to V_2 , from V_2 to V_3 , and from V_3 to V_1 . The (2)^s-foil is a digraph of 2 edge-disjoint $\vec{K}_{s,s,s}$ with s common vertices and the common vertices are called the centers of the (2)^s-foil.

We have the following theorems.

Theorem 2. The (2)^s-foil has a balanced bowtie decomposition.

Proof. Denote the (2)^s-foil as { $(V_1, V_2, V_3), (V_1, V_4, V_5)$ }, where $V_i = \{(i-1)s + 1, (i-1)s + 2, ..., is\}$ (i = 1, 2, ..., 5).

Construct s^2 bowties B_{ij} (i = 1, 2, ..., s; j = 1, 2, ..., s) as following: $B_{11} = \{(1, s + 1, 2s + 1), (1, 3s + 1, 4s + 1)\}$

 $\mathbf{B}_{12} = \{(1, s+2, 2s+2), (1, 3s+2, 4s+2)\}$

 $B_{1s} = \{(1, 2s, 3s), (1, 4s, 5s)\}$

-20-

 $B_{21} = \{(2,s+1,2s+2),(2,3s+1,4s+2)\}$ $B_{22} = \{(2,s+2,2s+3),(2,3s+2,4s+3)\}$

 $\mathbf{B}_{2s} = \{(2, 2s, 2s+1), (2, 4s, 4s+1)\}$

...

 $B_{s1} = \{(s,s+1,3s), (s,3s+1,5s)\}$ $B_{s2} = \{(s,s+2,2s+1), (s,3s+2,4s+1)\}$

 $\mathbf{B}_{ss} = \{(s, 2s, 3s-1), (s, 4s, 5s-1)\}.$

Then they comprise a balanced bowtie decomposition of the (2)^s-foil.

Theorem 3. If $K_{n,n,n}^*$ has a balanced bowtie decomposition, then $K_{sn,sn,sn}^*$ has a balanced bowtie decomposition.

Proof. When $K_{n,n,n}^*$ has a balanced bowtie decomposition, $K_{sn,sn,sn}^*$ has a balanced (2)^s-foil decomposition. By Theorem 2, the (2)^s-foil has a balanced bowtie decomposition. Therefore, $K_{sn,sn,sn}^*$ has a balanced bowtie decomposition.

Theorem 4. When $n \equiv 0 \pmod{3}$, $K_{n,n,n}^*$ has a balanced bowtie decomposition.

Proof. Put n = 3s. When s = 1, let $V_1 = \{1,2,3\}$, $V_2 = \{4,5,6\}$, $V_3 = \{7,8,9\}$. Construct 9 bowties B_i (i = 1,2,...,9) as following: $B_1 = \{(1,5,8),(1,9,6)\}$ $B_2 = \{(2,6,9),(2,7,4)\}$ $B_3 = \{(3,4,7),(3,8,5)\}$ $B_4 = \{(4,8,2),(4,3,9)\}$ $B_5 = \{(5,9,3),(5,1,7)\}$ $B_6 = \{(6,7,1),(6,2,8)\}$ $B_7 = \{(7,2,5),(7,6,3)\}$ $B_8 = \{(8,3,6),(8,4,1)\}$ $B_9 = \{(9,1,4),(9,5,2)\}$.

Then they comprise a balanced bowtie decomposition of $K_{3,3,3}^*$. Applying Theorem 3, $K_{n,n,n}^*$ has a balanced bowtie decomposition.

Therefore, we have the following theorem.

Main Theorem 1. K_{n_1,n_2,n_3}^* has a balanced bowtie decomposition if and only if $n_1 = n_2 = n_3 \equiv 0 \pmod{3}$.

-21---

3. Balanced trefoil decomposition of K_{n_1,n_2,n_3}^*

Notation. We denote a trefoil passing through $v_1 - v_2 - v_3 - v_1 - v_4 - v_5 - v_1 - v_6 - v_7 - v_1$ by $\{(v_1, v_2, v_3), (v_1, v_4, v_5), (v_1, v_6, v_7)\}$.

We have the following theorem.

Theorem 5. If K_{n_1,n_2,n_3}^* has a balanced trefoil decomposition, then $n_1 = n_2 = n_3 \equiv 0 \pmod{9}$.

Proof. Suppose that K_{n_1,n_2,n_3}^* has a balanced trefoil decomposition. Let b be the number of trefoils and r be the replication number. Then $b = 2(n_1n_2 + n_1n_3 + n_2n_3)/9$ and $r = 14(n_1n_2 + n_1n_3 + n_2n_3)/9(n_1 + n_2 + n_3)$. Among r trefoils having vertex v in V_i , let r_{ij} be the number of trefoils in which the centers are in V_j . Then $r_{11} + r_{12} + r_{13} = r_{21} + r_{22} + r_{23} = r_{31} + r_{32} + r_{33} = r$. Counting the number of vertices adjacent to vertex v in V_1 , $3r_{11} + r_{12} + r_{13} = 2n_2$ and $3r_{11} + r_{12} + r_{13} = 2n_3$. Counting the number of vertices adjacent to vertex v in V_2 , $r_{21} + 3r_{22} + r_{23} = 2n_1$ and $r_{21} + 3r_{22} + r_{23} = 2n_3$. Counting the number of vertices adjacent to vertex v in V_3 , $r_{31} + r_{32} + 3r_{33} = 2n_1$ and $r_{31} + r_{32} + 3r_{33} = 2n_2$. Therefore, $n_1 = n_2 = n_3$. Put $n_1 = n_2 = n_3 = n$. Then $b = 2n^2/3$, r = 14n/9, $r_{11} = r_{22} = r_{33} = 2n/9$ and $r_{12} + r_{13} = r_{21} + r_{23} = 4n/3$. Thus $n \equiv 0 \pmod{9}$. Therefore, $n_1 = n_2 = n_3 \equiv 0 \pmod{9}$ is necessary.

Let $\vec{K}_{s,s,s}$ denote the complete tripartite digraph with partite sets V_1 , V_2 , V_3 of s vertices each such that the directions of edges are directed away from V_1 to V_2 , from V_2 to V_3 , and from V_3 to V_1 . The (3)^s-foil is a digraph of 3 edge-disjoint $\vec{K}_{s,s,s}$ with s common vertices and the common vertices are called the centers of the (3)^s-foil.

We have the following theorems.

Theorem 6. The $(3)^{s}$ -foil has a balanced trefoil decomposition.

Proof. Denote the (3)^s-foil as { (V_1, V_2, V_3) , (V_1, V_4, V_5) , (V_1, V_6, V_7) }, where $V_i = \{(i-1)s+1, (i-1)s+2, ..., is\}$ (i = 1, 2, ..., 7).

Construct s^2 trefoils B_{ij} (i = 1, 2, ..., s; j = 1, 2, ..., s) as following: $B_{11} = \{(1, s + 1, 2s + 1), (1, 3s + 1, 4s + 1), (1, 5s + 1, 6s + 1)\}$ $B_{12} = \{(1, s + 2, 2s + 2), (1, 3s + 2, 4s + 2), (1, 5s + 2, 6s + 2)\}$

 $\mathbf{B}_{1s} = \{(1, 2s, 3s), (1, 4s, 5s), (1, 6s, 7s)\}$

 $B_{21} = \{(2,s+1,2s+2),(2,3s+1,4s+2),(2,5s+1,6s+2)\}$ $B_{22} = \{(2,s+2,2s+3),(2,3s+2,4s+3),(2,5s+2,6s+3)\}$... $B_{2s} = \{(2,2s,2s+1),(2,4s,4s+1),(2,6s,6s+1)\}$

-22-

 $B_{s1} = \{(s,s+1,3s), (s,3s+1,5s), (s,5s+1,7s)\}$ $B_{s2} = \{(s,s+2,2s+1), (s,3s+2,4s+1), (s,5s+2,6s+1)\}$

 $\mathbf{B}_{ss} = \{(s, 2s, 3s-1), (s, 4s, 5s-1), \dots, (s, 6s, 7s-1)\}.$

...

Then they comprise a balanced trefoil decomposition of the (3)^s-foil.

Theorem 7. If $K_{n,n,n}^*$ has a balanced trefoil decomposition, then $K_{s_{n,sn,sn}}^*$ has a balanced trefoil decomposition.

Proof. When $K_{n,n,n}^*$ has a balanced trefoil decomposition, $K_{sn,sn,sn}^*$ has a balanced (3)^s-foil decomposition. By Theorem 6, the (3)^s-foil has a balanced trefoil decomposition. Therefore, $K_{sn,sn,sn}^*$ has a balanced trefoil decomposition.

Theorem 8. When $n \equiv 0 \pmod{9}$, $K_{n,n,n}^*$ has a balanced trefoil decomposition.

Proof. Put n = 9s. When s = 1, let $V_1 = \{1, 2, ..., 9\}$, $V_2 = \{10, 11, ..., 18\}$, $V_3 = \{19, 20, ..., 27\}$. Construct 27 trefoils B_i (i = 1, 2, ..., 27) as following: $B_1 = \{(1,10,19), (1,11,20), (1,12,21)\}$ $B_2 = \{(2,10,20), (2,11,21), (2,12,19)\}$ $B_3 = \{(3,10,21),(3,11,19),(3,12,20)\}$ $B_4 = \{(4,13,22), (4,14,23), (4,15,24)\}$ $B_5 = \{(5,13,23), (5,14,24), (5,15,22)\}$ $B_6 = \{(6,13,24), (6,14,22), (6,15,23)\}$ $B_7 = \{(7,16,25),(7,17,26),(7,18,27)\}$ $B_8 = \{(8, 16, 26), (8, 17, 27), (8, 18, 25)\}$ $B_9 = \{(9,16,27), (9,17,25), (9,18,26)\}$ $B_{10} = \{(10,22,7),(10,23,8),(10,24,9)\}$ $B_{11} = \{(11,22,8),(11,23,9),(11,24,7)\}$ $B_{12} = \{(12,22,9),(12,23,7),(12,24,8)\}$ $B_{13} = \{(13,25,1),(13,26,2),(13,27,3)\}$ $B_{14} = \{(14,25,2),(14,26,3),(14,27,1)\}$ $B_{15} = \{(15,25,3),(15,26,1),(15,27,2)\}$ $B_{16} = \{(16,19,4), (16,20,5), (16,21,6)\}$ $B_{17} = \{(17, 19, 5), (17, 20, 6), (17, 21, 4)\}$ $B_{18} = \{(18, 19, 6), (18, 20, 4), (18, 21, 5)\}$ $B_{19} = \{(19,7,13), (19,8,14), (19,9,15)\}$ $B_{20} = \{(20,7,14), (20,8,15), (20,9,13)\}$ $B_{21} = \{(21,7,15), (21,8,13), (21,9,14)\}$ $B_{22} = \{(22,1,16), (22,2,17), (22,3,18)\}$

 $B_{23} = \{(23,1,17),(23,2,18),(23,3,16)\}$ $B_{24} = \{(24,1,18),(24,2,16),(24,3,17)\}$ $B_{25} = \{(25,4,10),(25,5,11),(25,6,12)\}$

 $B_{26} = \{(26,4,11), (26,5,12), (26,6,10)\}$

 $B_{27} = \{(27,4,12), (27,5,10), (27,6,11)\}.$

Furthermore, construct 27 trefoils \tilde{B}_i (i=1,2,...,27) by reversing all directions of edges in B_i . Then they comprise a balanced trefoil decomposition of $K_{5,9,9}^*$.

Applying Theorem 7, $K_{n,n,n}^*$ has a balanced trefoil decomposition.

Therefore, we have the following theorem.

Main Theorem 2. K_{n_1,n_2,n_3}^* has a balanced trefoil decomposition if and only if $n_1 = n_2 = n_3 \equiv 0 \pmod{9}$.

References

- P. Horák and A. Rosa, Decomposing Steiner triple systems into small configurations, Ars Combinatoria 26 (1988), pp. 91–105.
- [2] W. D. Wallis, Combinatorial Designs. Marcel Dekker, New York and Basel (1988).

(論文:完全3組対称有向グラフの均衡型 bowtie 分解と均衡型 trefoil 分解 著者:うしおかずひこ 近畿大学理工学部 受付:平成12年12月22日)