Balanced Bowtie and Trefoil Decomposition of Symmetric Complete Tripartite Digraphs

Kazuhiko USHIO
Department of Industrial Engineering
Faculty of Science and Technology
Kinki University
Osaka 577-8502, JAPAN
E-mail:ushio@is.kindai.ac.jp
Tel:+81-6-6721-2332 (ext. 4615)
Fax:+81-6-6730-1320

Abstract

First, we show that the necessary and sufficient condition for the existence of a balanced bowtie decomposition of the symmetric complete tripartite digraph $K_{n, 2, n_{2}, n_{3}}^{*}$ is $n_{1}=n_{2}=n_{3} \equiv 0(\bmod 3)$. Next, we show that the necessary and sufficient condition for the existence of a balanced trefoil decomposition of the symmetric complete tripartite digraph $K_{n_{1}, n_{2}, n_{3}}^{*}$ is $n_{1}=n_{2}=n_{3} \equiv 0(\bmod 9)$.

Keywords: Balanced bowtie decomposition; Balanced trefoil decomposition; Symmetric complete tripartite digraph

1. Introduction

Let $K_{n, n_{2}, n_{3}}^{*}$ denote the symmetric complete tripartite digraph with partite sets V_{1}, V_{2}, V_{3} of n_{1}, n_{2}, n_{3} vertices each. The t-foil (or the t-windmill) is a graph of t edge-disjoint triangles with a common vertex and the common vertex is called the center of the t-foil. In particular, the 2 -foil and the 3 -foil are called the bowtie and the trefoil, respectively. When $K_{n_{1, n 2, n 3}}^{*}$ is decomposed into edge-disjoint sum of t-foils, we say that $K_{n_{1}, n_{2}, n_{3}}^{*}$ has a t-foil decomposition. Moreover, when every vertex of $K_{n 1, n_{2}, n_{3}}^{*}$ appears in the same number of t-foils, we say that $K_{n, n_{2}, n_{3}}^{*}$ has a balanced t-foil decomposition and this number is called the replication number.
In Section 2, it is shown that the necessary and sufficient condition for the existence of a balanced bowtie decomposition of $K_{n, 1, n_{2}, n_{3}}^{*}$ is $n_{1}=n_{2}=n_{3} \equiv 0(\bmod 3)$.
In Section 3, it is shown that the necessary and sufficient condition for the existence of a balanced trefoil decomposition of $K_{n, 1, n_{2}, n_{3}}^{*}$ is $n_{1}=n_{2}=n_{3} \equiv 0(\bmod 9)$.

Let K_{n} denote the complete graph of n vertices. And let C_{3} be the cycle on 3 vertices. Then it is a well-known result that K_{n} has a C_{3}-decomposition if and only if $n \equiv 1$ or $3(\bmod 6)$. This decomposition is known as a Steiner triple system. See Wallis[2, Chapter 12 Triple Systems]. Horák and Rosa[1] proved that K_{n} has a bowtie-decomposition if and only if $n \equiv 1$ or $9(\bmod 12)$. This decomposition is known as a bowtie system.

2. Balanced bowtie decomposition of $\boldsymbol{K}_{n_{1}, n_{2}, n_{3}}^{*}$

Notation. We denote a bowtie passing through $v_{1}-v_{2}-v_{3}-v_{1}-v_{4}-v_{5}-v_{1}$ by $\left\{\left(v_{1}, v_{2}, v_{3}\right),\left(v_{1}, v_{4}, v_{5}\right)\right\}$.

We have the following theorem.

Theorem 1. If $K_{n_{1}, n_{2}, n_{3}}^{*}$ has a balanced bowtie decomposition, then $n_{1}=n_{2}=n_{3} \equiv 0(\bmod 3)$.

Proof. Suppose that $K_{n_{1}, n_{2}, n_{3}}^{*}$ has a balanced bowtie decomposition. Let b be the number of bowties and r be the replication number. Then $b=\left(n_{1} n_{2}+n_{1} n_{3}+n_{2} n_{3}\right) / 3$ and $r=5\left(n_{1} n_{2}+n_{1} n_{3}+n_{2} n_{3}\right) / 3\left(n_{1}+n_{2}+n_{3}\right)$. Among r bowties having vertex v in V_{i}, ler $r_{i j}$ be the number of bowties in which the centers are in V_{j}. Then $r_{11}+r_{12}+r_{13}=r_{21}+r_{22}+r_{23}=r_{31}+r_{32}+r_{33}=r$. Counting the number of vertices adjacent to vertex v in V_{1}, $2 r_{11}+r_{12}+r_{13}=2 n_{2}$ and $2 r_{11}+r_{12}+r_{13}=2 n_{3}$. Counting the number of vertices adjacent to vertex v in V_{2}, $r_{21}+2 r_{22}+r_{23}=2 n_{1}$ and $r_{21}+2 r_{22}+r_{23}=2 n_{3}$. Counting the number of vertices adjacent to vertex v in V_{3}, $r_{31}+r_{32}+2 r_{33}=2 n_{1}$ and $r_{31}+r_{32}+2 r_{33}=2 n_{2}$. Therefore, $n_{1}=n_{2}=n_{3}$. Put $n_{1}=n_{2}=n_{3}=n$. Then $b=n^{2}, r=$ $5 n / 3, r_{11}=r_{22}=r_{33}=n / 3$ and $r_{12}+r_{13}=r_{21}+r_{23}=r_{31}+r_{32}=4 n / 3$. Thus $n \equiv 0(\bmod 3)$.
Therefore, $n_{1}=n_{2}=n_{3} \equiv 0(\bmod 3)$ is necessary.

Let $\vec{K}_{s, s, s}$ denote the complete tripartite digraph with partite sets V_{1}, V_{2}, V_{3} of s vertices each such that the directions of edges are directed away from V_{1} to V_{2}, from V_{2} to V_{3}, and from V_{3} to V_{1}. The (2)s-foil is a digraph of 2 edge-disjoint $\vec{K}_{s, s, s}$ with s common vertices and the common vertices are called the centers of the (2) ${ }^{s}$-foil.

We have the following theorems.

Theorem 2. The (2)s-foil has a balanced bowtie decomposition.

Proof. Denote the (2)-foil as $\left.\left\{\left(V_{1}, V_{2}, V_{3}\right),\left(V_{1}, V_{4}, V_{5}\right)\right)\right\}$, where $V_{i}=\{(i-1) s+1,(i-1) s+2, \ldots, i s\} \quad(i=1,2$, ...,5).
Construct s^{2} bowties $\mathrm{B}_{i j}(i=1,2, \ldots, s ; j=1,2, \ldots, s)$ as following:
$B_{11}=\{(1, s+1,2 s+1),(1,3 s+1,4 s+1)\}$
$\mathbf{B}_{12}=\{(1, s+2,2 s+2),(1,3 s+2,4 s+2)\}$
...
$\mathbf{B}_{1 s}=\{(1,2 s, 3 s),(1,4 s, 5 s)\}$

```
B}\mp@subsup{\textrm{B}}{21}{}={(2,s+1,2s+2),(2,3s+1,4s+2)
B}\mp@subsup{\mp@code{22}}{}{=}{(2,s+2,2s+3),(2,3s+2,4s+3)
B
B
B
B
```

Then they comprise a balanced bowtie decomposition of the (2)s-foil.

Theorem 3. If $K_{n, n, n}^{*}$ has a balanced bowtie decomposition, then $K_{s n, s n, s n}^{*}$ has a balanced bowtie decomposition.

Proof. When $K_{n, n, n}^{*}$ has a balanced bowtie decomposition, $K_{s n, s n, s n}^{*}$ has a balanced (2)-foil decomposition. By Theorem 2, the (2) ${ }^{s}$-foil has a balanced bowtie decomposition. Therefore, $K_{s n, s n, s n}^{*}$ has a balanced bowtie decomposition.

Theorem 4. When $n \equiv 0(\bmod 3), K_{n, n, n}^{*}$ has a balanced bowtie decomposition.

Proof. Put $n=3 s$. When $s=1$, let $V_{1}=\{1,2,3\}, V_{2}=\{4,5,6\}, V_{3}=\{7,8,9\}$.
Construct 9 bowties $B_{i}(i=1,2, \ldots, 9)$ as following:
$B_{1}=\{(1,5,8),(1,9,6)\}$
$B_{2}=\{(2,6,9),(2,7,4)\}$
$B_{3}=\{(3,4,7),(3,8,5)\}$
$B_{4}=\{(4,8,2),(4,3,9)\}$
$B_{5}=\{(5,9,3),(5,1,7)\}$
$B_{6}=\{(6,7,1),(6,2,8)\}$
$B_{7}=\{(7,2,5),(7,6,3)\}$
$\boldsymbol{B}_{8}=\{(8,3,6),(8,4,1)\}$
$B_{9}=\{(9,1,4),(9,5,2)\}$.
Then they comprise a balanced bowtie decomposition of $K_{3,3,3}^{*}$.
Applying Theorem 3, $K_{n, n, n}^{*}$ has a balanced bowtie decomposition.

Therefore, we have the following theorem.

Main Theorem 1. $K_{n_{1}, n_{2}, n_{3}}^{*}$ has a balanced bowtie decomposition if and only if $n_{1}=n_{2}=n_{3} \equiv 0(\bmod 3)$.

3. Balanced trefoil decomposition of $\boldsymbol{K}_{n, n_{2}, n_{3}}^{*}$

Notation. We denote a trefoil passing through $v_{1}-v_{2}-v_{3}-v_{1}-v_{4}-v_{5}-v_{1}-v_{6}-v_{7}-v_{1}$ by $\left\{\left(v_{1}, v_{2}, v_{3}\right),\left(v_{1}, v_{4}, v_{5}\right),\left(v_{1}, v_{6}, v_{7}\right)\right\}$.

We have the following theorem.

Theorem 5. If $K_{n_{1}, n_{2}, n_{3}}^{*}$ has a balanced trefoil decomposition, then $n_{1}=n_{2}=n_{3} \equiv 0(\bmod 9)$.

Proof. Suppose that $K_{n_{1}, n_{2}, n_{3}}^{*}$ has a balanced trefoil decomposition. Let b be the number of trefoils and r be the replication number. Then $b=2\left(n_{1} n_{2}+n_{1} n_{3}+n_{2} n_{3}\right) / 9$ and $r=14\left(n_{1} n_{2}+n_{1} n_{3}+n_{2} n_{3}\right) / 9\left(n_{1}+n_{2}+n_{3}\right)$. Among r trefoils having vertex v in V_{i}, ler $r_{i j}$ be the number of trefoils in which the centers are in V_{j}. Then $r_{11}+r_{12}+r_{13}=r_{21}+r_{22}+r_{23}=r_{31}+r_{32}+r_{33}=r$. Counting the number of vertices adjacent to vertex v in V_{1}, $3 r_{11}+r_{12}+r_{13}=2 n_{2}$ and $3 r_{11}+r_{12}+r_{13}=2 n_{3}$. Counting the number of vertices adjacent to vertex v in V_{2}, $r_{21}+3 r_{22}+r_{23}=2 n_{1}$ and $r_{21}+3 r_{22}+r_{23}=2 n_{3}$. Counting the number of vertices adjacent to vertex v in V_{3}, $r_{31}+r_{32}+3 r_{33}=2 n_{1}$ and $r_{31}+r_{32}+3 r_{33}=2 n_{2}$. Therefore, $n_{1}=n_{2}=n_{3}$. Put $n_{1}=n_{2}=n_{3}=n$. Then $b=2 n^{2} / 3$, $r=14 n / 9, \mathrm{r}_{11}=r_{22}=r_{33}=2 \mathrm{n} / 9$ and $r_{12}+r_{13}=r_{21}+r_{23}=r_{31}+r_{32}=4 n / 3$. Thus $n \equiv 0(\bmod 9)$.
Therefore, $n_{1}=n_{2}=n_{3} \equiv 0(\bmod 9)$ is necessary.

Let $\vec{K}_{s, s, s}$ denote the complete tripartite digraph with partite sets V_{1}, V_{2}, V_{3} of s vertices each such that the directions of edges are directed away from V_{1} to V_{2}, from V_{2} to V_{3}, and from V_{3} to V_{1}. The (3)s-foil is a digraph of 3 edge-disjoint $\vec{K}_{s, s, s}$ with s common vertices and the common vertices are called the centers of the (3) ${ }^{s}$-foil.

We have the following theorems.

Theorem 6. The (3)-foil has a balanced trefoil decomposition.

Proof. Denote the (3)s-foil as $\left\{\left(V_{1}, V_{2}, V_{3}\right),\left(V_{1}, V_{4}, V_{5}\right),\left(V_{1}, V_{6}, V_{7}\right)\right\}$, where $V_{i}=\{(i-1) s+1,(i-1) s+2, \ldots, i s\}$ ($i=1,2, \ldots, 7$).
Construct s^{2} trefoils $B_{i j}(i=1,2, \ldots, s ; j=1,2, \ldots, s)$ as following:
$B_{11}=\{(1, s+1,2 s+1),(1,3 s+1,4 s+1),(1,5 s+1,6 s+1)\}$
$B_{12}=\{(1, s+2,2 s+2),(1,3 s+2,4 s+2),(1,5 s+2,6 s+2)\}$
$\mathbf{B}_{1 s}=\{(1,2 s, 3 s),(1,4 s, 5 s),(1,6 s, 7 s)\}$
$\mathbf{B}_{21}=\{(2, s+1,2 s+2),(2,3 s+1,4 s+2),(2,5 s+1,6 s+2)\}$
$\mathbf{B}_{22}=\{(2, s+2,2 s+3),(2,3 s+2,4 s+3),(2,5 s+2,6 s+3)\}$
$\mathbf{B}_{2 s}=\{(2,2 s, 2 s+1),(2,4 s, 4 s+1),(2,6 s, 6 s+1)\}$

$$
\begin{aligned}
& \mathrm{B}_{s 1}=\{(s, s+1,3 s),(s, 3 s+1,5 s),(s, 5 s+1,7 s)\} \\
& \mathrm{B}_{s 2}=\{(s, s+2,2 s+1),(s, 3 s+2,4 s+1),(s, 5 s+2,6 s+1)\} \\
& \ldots \\
& \mathbf{B}_{s s}=\{(s, 2 s, 3 s-1),(s, 4 s, 5 s-1), \ldots,(s, 6 s, 7 s-1)\}
\end{aligned}
$$

Then they comprise a balanced trefoil decomposition of the (3)s-foil.

Theorem 7. If $K_{n, n, n}^{*}$ has a balanced trefoil decomposition, then $K_{s n, s n, s n}^{*}$ has a balanced trefoil decomposition.

Proof. When $K_{n, n, n}^{*}$ has a balanced trefoil decomposition, $K_{s n, s n, s n}^{*}$ has a balanced (3)s-foil decomposition. By Theorem 6, the (3) ${ }^{s}$-foil has a balanced trefoil decomposition. Therefore, $K_{s n, s n, s n}^{*}$ has a balanced trefoil decomposition.

Theorem 8. When $n \equiv 0(\bmod 9), K_{n, n, n}^{*}$ has a balanced trefoil decomposition.

Proof. Put $n=9 s$. When $s=1$, let $V_{1}=\{1,2, \ldots, 9\}, V_{2}=\{10,11, \ldots, 18\}, V_{3}=\{19,20, \ldots, 27\}$.
Construct 27 trefoils $B_{i}(i=1,2, \ldots, 27)$ as following:
$B_{1}=\{(1,10,19),(1,11,20),(1,12,21)\}$
$B_{2}=\{(2,10,20),(2,11,21),(2,12,19)\}$
$B_{3}=\{(3,10,21),(3,11,19),(3,12,20)\}$
$B_{4}=\{(4,13,22),(4,14,23),(4,15,24)\}$
$B_{5}=\{(5,13,23),(5,14,24),(5,15,22)\}$
$B_{6}=\{(6,13,24),(6,14,22),(6,15,23)\}$
$B_{7}=\{(7,16,25),(7,17,26),(7,18,27)\}$
$B_{8}=\{(8,16,26),(8,17,27),(8,18,25)\}$
$B_{9}=\{(9,16,27),(9,17,25),(9,18,26)\}$
$B_{10}=\{(10,22,7),(10,23,8),(10,24,9)\}$
$B_{11}=\{(11,22,8),(11,23,9),(11,24,7)\}$
$B_{12}=\{(12,22,9),(12,23,7),(12,24,8)\}$
$B_{13}=\{(13,25,1),(13,26,2),(13,27,3)\}$
$B_{14}=\{(14,25,2),(14,26,3),(14,27,1)\}$
$B_{15}=\{(15,25,3),(15,26,1),(15,27,2)\}$
$B_{16}=\{(16,19,4),(16,20,5),(16,21,6)\}$
$B_{17}=\{(17,19,5),(17,20,6),(17,21,4)\}$
$B_{18}=\{(18,19,6),(18,20,4),(18,21,5)\}$
$B_{19}=\{(19,7,13),(19,8,14),(19,9,15)\}$
$B_{20}=\{(20,7,14),(20,8,15),(20,9,13)\}$
$B_{21}=\{(21,7,15),(21,8,13),(21,9,14)\}$
$B_{22}=\{(22,1,16),(22,2,17),(22,3,18)\}$
$B_{23}=\{(23,1,17),(23,2,18),(23,3,16)\}$
$B_{24}=\{(24,1,18),(24,2,16),(24,3,17)\}$
$B_{25}=\{(25,4,10),(25,5,11),(25,6,12)\}$
$B_{26}=\{(26,4,11),(26,5,12),(26,6,10)\}$
$B_{27}=\{(27,4,12),(27,5,10),(27,6,11)\}$.
Furthermore，construct 27 trefoils $\tilde{B}_{i}(i=1,2, \ldots, 27)$ by reversing all directions of edges in B_{i} ．Then they comprise a balanced trefoil decomposition of $K_{9,9,9}^{*}$ ．
Applying Theorem 7，$K_{n, n, n}^{*}$ has a balanced trefoil decomposition．

Therefore，we have the following theorem．

Main Theorem 2．$K_{n_{1}, n_{2}, n_{3}}^{*}$ has a balanced trefoil decomposition if and only if $n_{1}=n_{2}=n_{3} \equiv 0(\bmod 9)$ ．

References

［1］P．Horák and A．Rosa，Decomposing Steiner triple systems into small configurations，Ars Combinatoria 26 （1988），pp．91－105．
［2］W．D．Wallis，Combinatorial Designs．Marcel Dekker，New York and Basel（1988）．
（論文：完全 3 組対称有向グラフの均衡型 bowtie分解と均衡型 trefoil分解 著者：うしおかずひこ近畿大学理工学部 受付：平成12年12月22日）

