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                            Abstract 

  We shall show that a connected graph Go is projective-planar if and only if it has a series of double 

coverings G,, - G,, - i - - - - o Go with Q, planar, called a planar tower, and that a connected graph is 

projective-planar if and only if it has a projective-planar double covering. This works as an evidence 

supporting Negami's planar cover conjecture.

                           Introduction 

  Our graphs are simple and finite. A graph G is called an (n-fold) covering of a graph G with a projection 

p: G if there is an n-to-one su~ection p: V(G) ) V(G) which sends the neighbors of each vertex v G 

V(d) bijectively to those of p(v). In particular, if there is a subgroup A in the automorphism group Aut(07) 

such that p(u) =p(v) whenever r (u) = v for some r F= A, then C; is called a regular covering. It is easy to see 

that a 2-fold (or double) covering is necessarily a regular one. 

  A graph is said to be projective-planar if it can be embedded in the projective plane. The author [9] has 

discussed the relation between planar double coverings and embeddings of graphs in the projective plane, 

and established the following characterization of projective-planar graphs: 

Theorem 1. (Negami [9]) A connected graph is projective-planar if and only if it has a planar double 

covering. 

  Furthermore, he has proved the following theorem, which extends Theorem I with "regular" instead of 
"double": 

Theorem 2. (Negami [10]) A connected graph is projective-planar if and only if it has a planar regular 

covering. 

  These theorems motivated him to propose the following conjecture. This is called "the 1-2-- conjecture" 

or "Negami's planar cover conjecture": 

Conjecture 1. (Negami [10], 1986) A connected graph is projective-planar if and only if it has a planar 

covering. 

  There have been many papers on studies around this conjecture, but the sufficiency is still open. At 

present, we have the following theorem, combining the results in [2, 3, 6, 8, 10, 11 ]: .
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Theorem 3. (Archdeacon, Fellows, Hlin6n~ and Negami) If KI,2,2,2has no planar covering, then Conjecture 
I is true. 

  In this paper, we shall give a partial result or an evidence supporting Conjecture 1, introducing a new 

notion on coverings, as follows. 

   Let pi : Gi - Gi - i be a double covering projection from Gi to Gi - 1. A series G,, - Gn Go is 

called a planar tower of Go (of height n) if the top graph G,, is planar. The composition p =plp2'-'Pn Gn -

Go of covering projections is a 2~-fold covering projection from G,, to Go and is said to be obtained by tower 

construction. 

Theorem 4. A connected graph is projective-planar if and only if it has a planar tower. 

  Since a planar covering obtained by tower construction is not regular in general, this theorem covers a 

part which Theorem 2 does not. We shall prove Theorem 4, as a consequence of the following theorem, 
which extends Theorem 1, relaxing the planarity of double coverings: 

Theorem 5. A connected graph is projective-planar if and only if it has a projective-planar double 

covering. 

  Hlin6n~ [71 has proposed the conjecture that a connected graph is projective-planar if and only if it has a 

projective-planar covering and has shown that it is equivalent to Conjecture 1. Theorem 5 gives us a partial 
answer to his conjecture.

                        1. Double coverings of Kl,2,2,2 

  As well as for Conjecture 1, we need to analyze the coverings of KI,2,2,2. First we shall prepare the 

following lemma to decide their projective-planarity. Note that the subgraphs H, and H2 discussed in the 

lemma are the same one as "disjoint k-subgraphs" defined by Archdeacon in [1]. 

Lemma 6. Let G be a connected graph such that.-

  (i) There exist two disjoint subgraphs HI and H2 of G each of which is isomorphic to either K4 or K2,3-

 (ii) Each vertex of Hi is adjacent to a vertex in G - V(Hj) for {ij} = {1,2}. 

 (iii) Both G - V(HI) and G - V(H2) are connected 

Then G is not projective-planar. 

Proof. Suppose that G is embedded in the projective plane. Then there is a 2-cell region D2 which contains 

one of H, and H2 and is disjoint from the other. Assume that HI is contained in D2. Since G - V(HI) is 

connected, we can suppose that D2 is disjoint from G - V(HI). Then each edge joining HI and G - V(HI) 

must cross the boundary of D2. This implies that H, is outerplanar, but this is impossible since neither K4 nor 

K2,3 is outerplanar. 0 

  The following lemma is a main part of our arguments to prove Theorems 4 and 5: 

Lemma 7. Ki,2,2,2 does not have any projective-planar double covering.
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Proof The graph KI,2,2,2can be regarded as the join of a graph T isomorphic to K2,2,2with an extra vertex x. 

Let jai, a2, bi, b2, cl, c2} be the six vertices of T labeled so that two vertices are adjacent only when they 

have different alphabets. Then there are eight triangles aibjck (i, j, k 1, 2 1) and T can be embedded on the 

sphere so that it forms the octahedron with faces aibjck. 

   Consider subgraphs in KI,2,2,2isomorphic to either K4or K2,3and categorize them into the following three: 

  1. Each of the subgraphs induced by, I ai, bj, Ck, X} is isomorphic to K4. 

 2. The union of any cycle:uwlvw2of length 4 in T with a path uxv forms a subgraph isomorphic to K2,3. 

 3. The union of three paths albia2, alb2a2, aicka2 forms a subgraph isornorphic to K2,3- Any permutation 

    over {a, b, c} generates this type of a subgraph. 

   Letp:K-KI,2,2,2be a double covering and let H be a subgraph in KI,2,2,2 Of One of the above three types. 

Suppose that H can be lifted to k, that is, p -I (H) consists of two components, say H, and H2, and each of 

them is isornorphic to H. It is clear that Conditions (i) and (ii) in Lemma 6 hold for these H, and H2.   
~ First suppose that H is isomorphic to K4and let J be any component of p- 1 (T- V(H)). If J is joined to 

only one of H, and H2with edges, say H1, then J must be a cycle of length 3 obtained as a lift of 

a3 A -i C3 -kand J U H, induces one component of k, isomorphic to KI,2,2,2. Thus, k is isomorphic to K,                                                                                                                                                            2,2,2 

UK,,2,2,2 and is not projective-planar. Otherwise, all components of p- I (T- V(H)) are joined to H2with 

edges and they form a connected subgraph k- V(HI) with H2. Thus, Condition (iii) holds, in this case and 

hence i is not projective-planar by Lemma 6. 

  Suppose that H is of the second type. Similarly to the previous case, let J be any component of p- I (T-

V(H)) and suppose that J is joined to only H, with edges. First assume that H contains the cycle C = albia2CI 

asUWIVW2and the path aixa2as uxv. Then J is a lift of an edge b2c2and the both ends of J are adjacent to all 

lifts of a,, a2and x in Hi. Let d, and 9 be the lifts of a, and x in H1, respectively. Then J U I di, X} induces a 

subgraph in k which projects isomorphically to a subgraph of the first type. Thus, we can assume that J is 

joined to H2 in this case and hence k- V(HJ~is connected. This implies that k is not projective-planar by 
Lemma 6. 

  In the remaining cases with H of the second type, we can find those subgraphs already discussed in the 

previous cases, as follows. If H consists of the above C and the path bixci, then either the subgraph induced 

by H, contains a subgraph isomorphic to K4, or there is a path ink projecting to aixa2- On the other hand, if 

H consists of the cycle C = albia2b2and the path aixa2, then J consists of a single vertex which projects to cl 

or C2, say cl, and the vertex is adjacent ,to all vertices of the lift of C. In this case, there is a subgraph in 9 
which projects to C U aixa2-

   Finally suppose that H is of the third type. Then p -I (KI,2,2,2 - V(H)) has two components and each of 

which consists only of an edge projecting toC3 -kX- If One of the components is joined only to H, with edges, 

then we can find a subgraph ink isomorphic to K4and conclude that k is not projective-planar, as well as in 

the previous case. Otherwise, Condition (iii) in Lemma 6 holds and k isnot projective-planar, again. 

   To complete the proof, it suffices to show that there is no projective-planar double covering of KI,2,2,2 
such that any subgraph isomorphic to K4or K2,3cannot be lifted. To describe a possible double covering, we 

use a voltage assignment to E(K1,2,2,2)withZ2 = 10, 1}. (See [5] for the theory of voltage graphs.) We may
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assume that each edge incident to x has voltage 0 since they form a spanning tree of . KI,2,2,2and consider only 
the voltages over edges of T. 

  Those voltages must satisfy the following conditions to exclude the lift of subgraphs of corresponding 

types. The voltage of a path or a cycle is defined as the summation of the voltages along it. Any path can be 

lifted while a cycle can be lifted if and only if its voltage is 0. 

 1. At least one of three edges on the triangle a ibjckhas voltage I for i, j, k E=_ 11, 2). 

 2. At least one of two paths of length 2 between any pair of vertices has voltage 1. 

 3. At least one of three paths of length 2 between any nonadjacent pair of vertices has voltage 0 and the 

   others have voltage 1. 

  Let k be a double covering of KI,2,2,2derived by a given voltage assignment with the above conditions 

and put fr=p-I(T). Then T has 12 vertices and 24 edges. By Euler's formula, T must have 13 faces 

whenever it is embedded in the projective plane. Furthermore, we haveli ~3iFi = 2.24 = 48, where Fi stands 

for the number of faces of size i. Since 48/13 < 4, then t has a triangular face and hence there is a triangle 

in T, say albicl, With voltage 0. 

  By Condition 1, we may assume that albi, a1c, and b1c, have voltage 1, 1 and 0, respectively. By 

Condition I for a2bic, and Condition 2 for {a,, a2},we may assume that a2b, and a2C, have voltage 0 and 1, 

respectively, up to symmetry. If b1c2had voltage 0, then a2C2would have voltage I by Condition 1 for a2bIC2, 

but it would have voltage 0 by Condition 2 forIC1, C2}, a contradiction. Thus, bIC2must have voltage 1. 

  Suppose that a2c2has voltage 0. Condition 3 for {cI, c2} forces aIc2 to have voltage 1. In this case, the 

path aib2a2can have neither voltage 0 nor 1 by Conditions 2 and 3 for {a,, a2), a contradiction. Conversely, 
if a2c2has voltage 1, then the path cib2C2can have neither voltage 0 nor 1 by Conditions 2 and 3 for {cI, c2}, 

a contradiction. Therefore, we cannot define a voltage assignment with Conditions 1, 2 and 3. 0 

                          2. Proof of theorems

Proof of Theorem 5. The necessity follows from Theorem 1, so it suffices to show the sufficiency. Thus, 

we, shall show that if a connected graph G is not projective-planar, then G does not have any projective-

planar doub le covering. 
  A graph H is called a minor of a graph G if H can be obtained from G by contracting and deleting some 

edges. It is ' easy to see that if G has a projective-planar double covering, then so does H. Thus, it suffices to 
show that every minor-minimal graph among those graphs that are not projective-planar does not have a 

projective-planar double covering. Such minor-minimal graphs have been already identified in [1] and [4]; 
they are 35 in number and three of them are disconnected. We do not need those disconnected ones. 

  Let Gy be a graph with a vertex v of degree 3 and let vi, V2andV3be the three neighbors of v. A Y- A 

transformation is to add three new edgesVIV2, V2V3and v3v, after deleting v. Let GA be a graph obtained from 

Gy by a Y- A transformation. It is easy to see that if Gy has a projective-planar covering, then so does GA. It 

has been known that the 32 minor-minimal graphs can be classified into I I families, up to Y- A 

transformations, and that every member in 10 families not including KI,2,2,2 does not have any planar 
covering.
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  Taking the universal covering of the projective plane, which is homeomorphic to the sphere, derives a 

planar double covering of any graph embedded in the projective plane, and hence if G has a projective-

planar double covering, then G has a planar 4-fold covering. Thus, it suffices to show that any graph which 
can be deformed into KI,2,2,2by Y-A transformations does not have a projective-planar double covering. It is 

however clear since KI,2,2,2itself does not by Lemma 7. This completes the proof. M 

  Note that our arguments in the previous proof work for a proof of Theorem 3 if we replace "projective-

planar double coverings" with "planar coverings". 

Proof of Theorem 4. We shall show only the sufficiency, using induction on the height n of a planar tower 

G,, Q, - I - - - - , G, I- Go. If n = 1, then Go is projective-planar, by Theorem 1. If n > 1, then G, - Gn - I 
 1, - G, is a planar tower of G, of height n - 1 and hence GI is projective-planar , by the induction 

hypothesis. Since p, : G, - Go is a projective-planar double co vering, Go is projective-planar, by Theorem 5. 

This completes the induction. 0
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