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Abstract

   Antimatroids are antipodal to matroids, which are considered as combinatorial abstraction of 

convexity. We consider an extension of Dilworth's decomposition theorem for partially ordered sets, 

which states that the maximum size of antichains is equal to the minimum number of chains which 

cover the ground set for any partially ordered set. In particular, we investigate the relationship between 

the extended statement and circuits of antimatroids.

1 Antimatroids

   In a paper of 1950, Dilworth[l] showed one of the most famous theorems for partially ordered-

sets, or posets. That is, for any poset, the maximum size of antichains is equal to the minimum number 

of chains which cover the ground set. In this paper, we consider an extension of this theorem to 

antimatroids. Antimatroids are known as a combinatorial abstraction of the concept of "convexity," 

which are "antipodal" to matroids in many respects. For example, matroids can be defined by a closure 

operator which satisfies the exchange axiom, while antimatroids can be defined by a closure operator 

which satisfies the anti-exchange axiom. See [2, 4, 5, 6, 7, 8, 9] for details of antimatroids, greedoids, 

which includes antimatroids and matroids as subclasses, and convex geometries, which is known as dual 

of antimatroids. 

   Let E be a non-empty finite set. A family F of subsets of E is an antimatroid on E if it satisfies 

the following conditions: 

(1) OEEF, E GF 

(2) X EF \ {O I implies X\{e} E=-F for some e E=- X, 

(3) X, Y EF implies X U Y EF 

Members of an antimatroid are called feasible sets, and E is called the ground set of F 

   We can obtain many classes of antimatroids by shelling processes or searching processes. By
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shelling processes, we mean repeated elimination of suitable elements until all the elements are 

removed. We see some examples of shelling processes. 

Example 1.1 (convex shelling of points on the Euclidean space). Let E C- R" be a finite set of points 

on the Euclidean space. Then, we consider the following procedure: 

     1. Set X :=O and C:=fO) 

     2. while X =k E repeat 

        2.1 Cloose a vertex of the convex hull of E X, say e. 

       2.2 Reset X: =XU {e) and C C U (XU fe} 1. 

        2.3 Return to the head of this repetition. 

Here, the convex hull of X is the minimal closed set which includes all points of X. For example, we 

consider the case of the figure below. 

             16 19 10 10 

           441 4,g 44 

              2 - - - - - - - $03 2 e~ 

       X X 13} X 12,31 X 12,3,4} 
          e 3 e 2 e 4 e 1 

This figure indicates how the procedure executes, and now by this procedure we have C {3), {2, 

3}, f 2, 3, 4}, { 1, 2, 3, 41 }. The family C depends on the order to choose e in each iteration. Here, we 

enumerate all of the possible cases: 

 C, [I), { 1, 2}, { 1, 2, 3), f 1, 2, 3, 4)), 

 C2 fl), f 1, 2), {1, 2, 4), {1, 2, 3, 4)), 

 C3 {1, 3}, {1, 2, 3), {1, 2, 3, 4}), 

 C4 {I 1, {1, 3}, [1, 3, 4), {1, 2, 3, 4)), 

 C5 {1}, 1, 4), {1, 3, 4), {1, 2, 3, 4)), 

 C6 {]}, (1,41, {1, 2, 4), {1, 2, 3, 4)}, 

 C7 {2), 1, 2}, {1, 2, 3), (1, 2, 3, 4)}, 

 C8 = {2), {1, 2}, { 1, 2, 4), {I, 2, 3, 4}), 

 C9 = {2}, (2, 3}, (1, 2,3), f 1, 2, 3, 4}}, 

 Cio = {0, 12}, {2, 3}, f 2, 3, 4), {1, 2, 3, 4)), 

 Cii = {0, M, {2, 4}, (1,2,4), {1, 2, 3, 4}), 

 C 12 fO, {21, f 2, 4}, {2, 3, 4), (1, 2, 3, 4)), 

 C 13 10, {3 1, {I, 3}, (1, 2, 3), {1, 2, 3, 4}},
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 C 14 10, {3}, { 1, 3b 11, 3, 4}, 1, 2, 3, 4} 

 C 15 {0, {3}, 12, 3}, 11, 2, 3}, 1, 2, 3, 4) 

 C16 {0, 13}, {2, 31, {2, 3, 4}, {1, 2, 3, 41}. . 

Then, we define F as 

               16 

    F UCj' 

           {I 1, {2), {3}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, 12, 4}, 11, 2, 3}, {1, 2, 4}9 

              11, 3, 4}, 129 3, 4}, 11, 2, 3, 4}} 

We can easily check that F is an antimatroid, which is called the convex shelling of E. 

   In other words, we can represent this antimatroid F as: 

(4) F = JX 9: E: E \ X conv.hull (E\x)nE}, 

where conv.hull(E \ X) is the convex hull of E \ X. 

   Often, we represent an antimatroid by the Hasse diagram as the following figure.

Now, we see another example of shelling processes. 

Example 1.2 (poset shelling). Let (E, ~~) be a poset. Then we consider the following procedure: 

     1. SetX :=O and C:={O}. 

     2. While X + E repeat: 

        2. 1 Choose a minimal element of E \ X, say e. 

       2. 2 Reset X:=XU {e} and C:=C U {XU {el}. 

        2. 3 Return to the head of this repetition. 

For example, we consider the case of the figure below.

-45-



This figure indicates how the procedure executes, and now by this procedure we have C = {0, {2 1, 

2 1, f 1, 2, 41, 11, 2, 3, 4} 1. The family C depends on the order to choose e in each 'iteration. 

Then, 

    F = UC 

           111, {2}, {1, 2}, 11, 3}, {1, 2,3}, (I, 2,4}, 11, 2,3,4}} 

forms an antimatroid, which is called the poset shelling of (E, < 

   An order ideal of the poset (E, < ) is a subset X 9 E such that b G X, a b imply a E X. We also 

define a poset shelling F by order ideals as follows: 

(5) F = {X 9; E: X is an order ideal of (E, < 

   The following figure shows the representation by the Hasse diagram of this antimatroid.

   The only difference of the procedures in Example 1. 1 and Example 1.2 is Step 2. 1. In Example 1. 1, 

Step 2.1 of the procedure lets us choose a vertex of the convex hull, while in Example 1.2, Step 2.1 of 

the procedure lets us choose a minimal element. Thus, by modifying Step 2.1, we can generate some 

antimatroids in similar ways.

Example 1.3 (vertex shelling of a tree / edge shelling of a tree). Let G = (V, E) be a tree. A leaf of G 

is a vertex with degree 1. If we delete leaves step by step, then we obtain an antimatroid on V, which is 

called the vertex shelling of the tree G. Analogously, we define the edge shelling of a tree.
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Example 1.4 (double shelling of a poset). Let (E, <) be a poset. Now, we consider deleting minimal 

elements or maximal elements repeatedly. Then, we obtain an antimatroid on E, which is called the 

double shelling of the poset (E, <). 

Example 1.5 (simplicial shelling of a triangulated graph). A graph G=(V, E) is triangulated (or 

chordal) if it contains no induced cycles , other than triangles. A vertex of a graph is simplicial if its 
neighbors form a complete subgraph. 

   Let G =(V, E) be a triangulated graph. If we elirminate a simplicial vertex in each iteration, then 

we obtain an antimatroid on V, which is called the simplicial shelling of the triangulated graph G. 

   A search is another process to obtain antimatroids, which means a gathering process of adjacent 

elements. Let us see an example. 

Example 1.6 (point search of a rooted directed graph). Let G = (V U {r}, E) be a directed graph 

with a specified vertex r called the root. Then we consider the following procedure: 

     1. Set X 0 and C 10). 

     2. While X * V repeat: 

        2.1 Choose a vertex of V \ X adjacent to a vertex of XU W, say e. 

       2.2 Reset X:=XU {e} and C:=CU fXU fe}} 

        2.3 Return to the head of this repetition. 

For example, we consider a rooted graph G with the vertices {r, 1, 2, 3, 4} and edges {(r, 1), (r, 2), 

(1, 3), (2, 3), (2, 4), (3, 4)}, and the search process as follows:
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By this procedure we have C = {0, I I }, { 1, 3 1, 2, 3 1, 2, 3, 4) }. The family C depends on the 

order that we choose e in each iteration. Then, 

   F= UC 

         {O, { I }, 12}, { 1, 2}, { 1, 3}, 12, 3}, {2, 4 1, 1, 2, 3}, { 1, 2, 4}, { 1, 3, 4}, 12, 3, 4 1, 

         {1, 2, 3, 4}} 

forms an antimatroid on V, which is called the point search of the rooted directed graph G. 

   Analogously, we also consider point searches of rooted undirected graphs, line searches of rooted 

directed graphs, and line searches of rooted undirected graphs. 

   It is known that an antimatroid forms a semimodular lattice with respect to set-inclusion. See [101 

for comprehensive results on sernimodular lattices.

                     2 Dilworth-type antimatroids 

Let us recall Dilworth's decomposition theorem. 

   Let P = (E, < ) be a poset. A subset X 9: E is a chain of P if any two distinct elements of X are 

comparable. Similarly, a subset X9E is an antichain of P if any two distinct elements of X are 

incomparable. We denote the family of the chains of P by C (P), and the family of the antichains of P 

by A (P). 

Proposition 2.1 (Dilworth's decomposition theorem [1]). Let P = (E, ~~) be a poset. Then, 

(6) max {1A I : A E=- A (P)} = min I t:Cj, C2, C, E C (P), UCj = E 
that is, the maximum size of antichains of P is equal to the minimum number of chains of P which 

cover E. 

    Now, we consider an extension of Dilworth's decomposition theorem to antimatroids. First, we 

have to consider antimatroidal analogues of chains and antichains. 

   Let F be an antimatroid on E, and A C E. The trace on A is defined by 

(7) F :A = jAnx: xE=-F i, 

which means that, if we restrict E to A and consider shelling processes on A in the same way as we 

obtain F on E, then we obtain F :A. Notice that the trace of an antimatroid is also an antimatroid on 

A. A subset A C E is free if 

(8) F : A=2, 

while A is linear if 

(9) F : A = {0} U ffei, ej i = 1, k} 

for some numbering A lei, . . , ek}-
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Remark 2.2. Let F be the poset shelling of poset P = (E, < ), and A 9 E. A is a free set of F if and 

only if it is an antichain of P, and A is a linear set of F if and only if it is a chain of P. 

   For an antimatroid F, we denote the family of the free sets by Freeff ), and the family of the 

linear sets by Lin(F ). Traces and free sets were first introduced in [8], while linear sets did not appear 

in the past literature. We investigate some properties of free sets and linear sets. 

Lemma 2.3. Let F be an antimatroid on E. Freeff and Lin(F are hereditary, that is, 

(10) X E Free(F ) and X'9 X imply X'G Free (F 

(11) X G Lin(F ) and X'Q X imply X'E=- Lin (F 

Proo Let X G Freeff and X'E-X. Then, f 

     lynx,: YEEF i(ynx)nx,: YEEF 

                   lznx, : ZGF: X). 

Therefore, F :X' =(F : X) : X'. Since 2 E : X lynx: Y E=- 2 E} 2x for any A 9: E, we have 

F: X'=(F:X) : X'= 2: X'= 2" for XGFreeff). Hence X'ElZreeff). We have a similar discussion 

on Lin(F El 

Lemma 2.4. Let F be an antimatroid on E. Then, for any X E=- Freeff and any Y E=- Lin(F we have 

I xny I < 1. 

Proo By Lenima 2.3, we have x n Y E Freeff ). Similarl x n Y E Lin(T ). Therefore xny    f . y F:xnY=2 

 {O } U (I ei, eJ 1, k} for x n Y = lei, ek}. Hence, I x n Y I must be at most 
one. 

Lemma 2.5. Let F be an antimatroid on E, and A 9 E. Then, 

(12) 1 A I < 1 A E=- Lin(F ) and A E=- Free (F 

(13) 1 A I = 2 either A EE Lin(F ) or A E Free (F 

Proo It is easily checked from the definitions of free sets and linear sets. f 

Lemma 2.6. Let F be an antimatroid on E. Then, 

(14) max{ I X I : X E=- Freeff mint t : Y1, Y, E= Lin(F U Yi E). 
Proof. Without loss of generality, we assume that Y1, . . . , Y, E=- Lin(F ) are all disjoint by Lemma 2.3. 

For any X G Freeff and for any disjoint Y1, . . Y, F= Lin(F ) such that U Yi = E, 

                       

t t 

     

I x xnyi I < Jl=t, 
                                                 i=1 

using Lemma 2.4.
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   We now introduce Dilworth-type antimatroids. Let F be an antimatroid on E. Freeff ) be the 

family of the free sets of F, and Lin(F ) be the family of the linear sets of F. The antimatroid F is 

Dilworth-type if it satisfies the following equality: 

t (15) max{IXI : XC-Free(F)I= min t : Yi, . YELin(F), Yj=E 

   Poset shellings (Example 1.2) are Dilworth-type by Proposition 2.1 and Remark 2.2. However, 

there are some antimatroids which are not Dilworth-type. Here, we observe the point searche's (Example 
1.6) of two rooted directed graphs, one of which is Dilworth-type while the other is not. 

Example 2.1. Let G be a directed graph with the vertices {r, 1, 2, 3, 4} and the edges {(r, 1), (r, 2), 

(1, 3), (2, 3), (2, 4)}, and F be the point search of G. Then, 

(16) Lin(F {O, {1}, {21, {3}, {41, {2, 4}1 

(17) Freeff 10, (11, {2}, {31, {41, {1, 2}, {1, 3}, {1, 4}, {2, 31, {3, 4}, {1, 3, 4}}. 

                                                    -3

We can check that F is Dilworth-type. 

Example 2.2. Let G be a directed graph with the vertices {r, 1, 2, 3, 4} and the edges {(r, 1), (r, 2), 

(1, 3), (2, 3), (3, 4)}, and F be the point search of G. Then, 

(18) Lin(F {0, {1}, {2}, 13}, 14}, {3, 4}}, 

(19) Free(F {0, jl}, {2}, {3}, [4}, {1, 2}, {1, 31, {1, 4}, {2, 3}, {2, 4}}.

We can check that F is not Dilworth-type. 

   In the next section, we introduce circuits of antimatoids and show that an antimatroid is not 

Dilworth-type if all of its circuits have cardinality more than two.
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           3 Circuits of antimatroids and Dilworth-type antimatrolds 

   First, we introduce the concept of circuits of antimatroids. Let F be . an antimatroid on E. A subset C 

9E is a. circuit of F if C is minimal non-free set, that is, C is not free and every proper subset of C is 

free. Let us see some example. If F is a convex shelling on the 2-dimensional Euclidean plane (Example 

1. 1), then the circuits are triples of colinear points and quadruples in which one point is in the interior of 

the triangle spanned by the other three. If F is a shelling of a poset P=(E, ~~) (Example 1.2), then the 

circuits are pairs {a, b} such that a < b. If F is a vertex shelling of a tree G = (V, E) (Example 1.3), then 

the circuits are triples of vertices lying on a path. If F is a double shelling of a poset P = (E, < ) 

(Example 1.4), then the circuits are triples I a, b, c} such that a< b < c. Note that we have the 

characterization of antimatroids via circuits [3] analogous to the case of matroids. However, it is not a 

topic for this paper. 

   Let C be a circuit of an antimatroid F on E. Then, it is known that there exists a unique element 

r G C such that F: C = 2c\ {rj .(see [8, 9], etc.). We call the element r the root of -the circuit , C. Sometimes 

we denote a circuit C with its root r by (C, r) in order to specify the root of C. 

Lemma . 3.1. Let F be an antimatroid on E and C 9 E be a circuit of F . Then I C I = 2 if and only 

if C G Lin(F 

Proo Set C={r, ej with the root r. From the definition of the root, F : {r, e}= {0, {e}, jr, 01.   f. 

Therefore , {r, e} is linear. The converse can-be similarly checked. F1 

   We see an interesting fact in [8]. An antimatroid F on E is ,Boolean if F 2'. Otherwise, it is 

called non-Boolean. 

Proposition 3.2 (Characterization of poset shelings via circuits [81). Let F be a non-Boolean 

antimatroid on E. Then, F is, a poset shelling if and only if every circuit of F has cardinality two. 

   From Proposition 3.2 and Remark 2.2, we can see that, if every circuit of F has cardinality two, 

then F is Dilworth-type. 

   Now we characterize the antimatroids every circuit of which has cardinality more than two, and 

show that they are not Dilworth-type. An antimatroid F on E is coatomic if E \ {e} C F for all e G= E, 

which means that we can leave any element as the last in the shelling process for a coatomic 

antimatroid. There are many coatomic antimatroidg. For example, convex shellings of points on the 

Euclidean space (Example 1. 1), vertex/edge shellings of trees (Example 1.3), double shellings of posets 

(Example 1.4), simplicial shellings of triangulated graphs (Example 1.5) are coatomic. 

Lemma 3.3 (Characterization of coatomic antimatroids via circuits). Let F be a non-Boolean 

antimatoid on E. Then, F is a coatomic antimatroid if and only if every circuit of F has cardinality 

more than two. 

Proo Let F be coatomic, that is, E \ {e} EF -for any e E E. Suppose that la, b}, is a circuit of F.
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From Lemma 3.1, (a, b} is linear. Therefore, F :{a, b}=10, {a}, la, b}}. This implies E\ {a} OF, 
which is a contradiction. 

   Conversely, let F be not coatomic, that is, E \ {e} OF for some e G E. Here, we only have to 
show that la, e} is a ciruit for some a G E, that is, {a, e} is linear (Lemma 3. 1.) Suppose that la, e} is 
free for any a E E \ {e}. Then, for each a E=- E \ {e}, there exists A EEF such that e 0 A and a G A. This 
implies that E\ {e} = U JA E=_F : e OA} GF, which is a contradiction. El 

Lemma 3.4. Let F be a coatomic antimatroid on E and A E- E. Then A G Lin(F if and only if 
 A < 1. 

Proof. It is checked directly from Lemma 2.5 and 3.3. 

Theorem 3.5. Any non-Boolean coatomic antimatroid is not Dilworth-type. 

Proof. Let F be anon-Boolean coatomic antimatroid on E. From Lemma 3.4, 

     mint t: Y11 ... I Y, G Lin(F )1' Yi = E IEI. t 
On the other hand, suppose that max X I : X E Free(F I E I . Then F must be Boolean, which is a 

contradiction. n

                            4 Summary 

We summarize the results in the following table.

Size of circuits Dilworth-type Examples

all two yes poset shellings

all more than two no convex shellings of points on IV,

shellings of trees,

double shellings of posets,

simplicial shellings of triangulated graphs,

etc.

otherwise yes/no point searches of rooted digraphs,

etc.

   We consider point searches of rooted digraphs (Example 1.6) such that some circuits of them have 

size two and some of them have size more than two. In this class we have both Dilworth-type 

antimatroids and not Dilworth-type , ones. Indeed, Example 2.1 is Dilworth-type, and the family of its 
circuits is 1, 2, 3 }, {2, 4} }. On the other hand, Example 2.2 is not Dilworth-type, and the family of 

its circuits is {{I, 2, 3}, {1, 2, 4}, {3, 411. 

   We finally remark that we have not yet known a characterization of Dilworth-type antimatroids and 

any algorithmic properties of them. 
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