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Abstract

Let D be a connected symmetric digraph, Z, a cyclic group of prime order p(> 3) and I" a group
of automorphisms of D. We enumerate the number of I'-isomorphism classes of g-cycic Zf’,-covers of
D for any nonunit g € Z3, where Zf; is the direct sum of three Z,,.

1. Introduction

Graphs and digraphs treated here are finite and simple.

Let D be a symmetric digraph and A a finite group. A function o : A(D) — A is called
alternating if a(y,z) = a(z,y)~! for each (z,y) € A(D). For g € A, a g-cyclic A-cover ( or
g-cyclic cover ) Dg(a) of D is the digraph as follows:

V(Dg()) = V(D) x A, and ((u, h), (v,k)) € A(Dy(x)) if and only if (u,v) €
A(D) and k™ 'ha(u,v) = g. '

The natural projection 7 : Dg(c) — D is a function from V(Dgy(c)) onto V(D) which erases the
second coordinates. A digraph D' is called a cyclic A-cover of D if D’ is a g-cyclic A-cover of D

for some g € A. In the case that A is abelian, then Dy (c) is simply called a cyclic abelian cover.

Let @ and 3 be two alternating functions from A(D) into A, and let I" be a subgroup of the
automorphism group Aut D of D, denoted I' < Aut D. Let g,h € A. Then two cyclic A-covers
Dy(e) and Dp(f3) are called I'-isomorphic, denoted Dy (o )=pDp(3), if there exist an isomorphism
® : Dy(a) — Dp(B) and a «y € I" such that 7® = ~ym, i.e., the diagram
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Dy(a) ~ .Dn(B)
T
D D

commutes. Let [ = {1} be the trivial subgroup of alitomorphiSms.

Cheng and Wells [1] discussed isomorphism classes of cyclic triple covers (1-cyclic Zs-covers) of
a complete symmetric digraph. Mizuno and Sato [16,18] enumerated the number of I-isomorphism
classes of g-cyclic Zg-coVers and g-cyclic Zn-covers, and I'-isomorphism classes of g-cyclic Z,-covers
of a connected symmetric digraph D for any prime p(> 2). Furthermore, Mizuno, Lee and Sato
[15] gave a formula for the the number of I-isomorphism classes of connected g-cyclic Zj-covers and
connected g-cyclic Zyn-covers of D for any prime p(> 2). Mizuno and Sato [16] gave a formula for
the enumeration of I'-isomorphism classes of g-cyclic Z, X Zy-covers of D for any prime p(> 2).

Let G be a graph and A a finite group. Let D(G) be the arc set of the symmetric digraph
corresponding to G. Then a mapping a : D(G) — A is called an ordinary voltage assignment if
o(v,u) = au,v) " for each (u,v) € D(G). The ( ordinary ) derived graph G* derived from an
ordinary voltage assignment «is defined as follows:

V(G*) = V(G) x A, and ((u,h), (v,k)) € D(G®) if and only if (u,v) € D(G)
and k = ha(u,v). :

The graph G? is called an A-covering of G. The A-covering G* is an | A |-fold regular covering
of G. Every regular covering of G is an A-covering of G for some group A (see [3]). Furthermore
the 1-cyclic A-cover D; () of a symmetric digraph D can be considered as the A-covering D* of
the underlying graph D of D.

A general theory of graph coverings is developed in [4]. Zj-coverings (double coverings) of graphs
were dealed in [5] and [22]. Hofmeister [6] and, independently, Kwak and Lee [12] enumerated the I-
isomorphism classes of n-fold coverings of a graph, for any n € IN. Dresbach [2] obtained a formula
for the number of strong isomorphism classes of regular coverings of graphs with voltages in finite
fields. The I-isomorphism classes of regular coverings of graphs with volfages in finite dimensional
vector spaces over finite fields were enumerated by Hofmeister [7]. Hong, Kwak and Lee [9] ‘gave the
number of I-isomorphism classes of Z,-coverings, Z, Z,-coverings and Dy,-coverings, n:odd, of
graphs, respectively. Mizuno and Sato [19,20,21] presented the numbers of I'-isomorphism classes of
Z;-coverings of graphs for n = 1,2,3 and any prime p(> 2).

In the case of connected coverings, Kwak and Lee [14] enumerated the I-isomorphism classes
of connected n-fold coverings of a graph G. Furthermore, Kwak, Chun and Lee [13] gave some
formulas for the number of I -isomorphism classes of connected A-coverings of G when A is a finite
abelian group or D,,.

We present the number of I'-isomorphism classes of g-cyclic Zf’,-covers of connected symmetric

digraphs for any element g # 0 € Zg, where 0 is the unit of Zg and any prime p(> 3).



2. Isomorphisms of cyclic Z3-covers

Let D be a connected symmetric digraph and A a finite abelian group. The group I' of automorQ
phisms of D acts on the set C(D) of alternating functions from A(D) into A as follows:

a¥(z,y) = a(v(z),v(y)) for all (z,y) € A(D),

where oo € C(D) and v € T.

Let G be the underlying graph of D. The set of ordinary voltage assignments of G with voltages
in A is denoted by C'(G; A). Note that C(D) = C'(G; A). Furthremore, let C°(G; A) be
the set of functions from V(G) into A. We consider C°(G; A) and C*(G; A) as additive groups.
The homomorphism & : C°(G; A) — C*(G; A) is defined by (8s)(z,y) = s(x) — s(y) for s €
C°(G; A) and (z,y) € A(D). The 1-cohomology group H*(G; A) with coefficients in A is defined
by HY(G; A) = C1(G; A)/Im §. For each o € C*(G; A), let [] be the element of H(G; A) which
contains a. . o .

The automorphism group Aut A acts on C°(G; A) and C*(Gj; A) as follows:

(03)‘(:1:) = o(s(z)) for z € V(D),

(00)(z,5) = o(a(x,y)) for (z,y) € A(D),

where s € C%(G;A), o € CYG;A) and 0 € Aut A. A finite group B is said to have the
isomorphism extension property(IEP), if every isomorphism between any two isomorphic subgroups

&1 and &; of B can be extended to an automorphism of B (see [9]). For example, the cyclic group Z,,
for n € N, the dihedral group D, for odd n > 3, and the direct sum of m copies of Z,(p: prime)
have the IEP.

Mizuno and Sato [18] gave a characterization for two cyclic A-covers of D to be I-isomorphic.

Theorem 1 (18, Corollary 3) Let D be a connected symmetric digraph, G the underlying
graph of D, A a finite abelian group with the IEP, g € A, a,8 € C(D) and I" < Aut D.
Assume that the order of g is odd. Then the following are equivalent:

1. Dg(Oé) = FDg(/B)
2. There existy €T, 0 € Aut A and s € C°(G; A) such that

B=00a"+68s and o(g) =g.

Let Iso(D, A, g,T") denote the number of T'-isomorphism classes of g-cyclic A-covers of D. The
following result holds.

Theorem 2 (18, Theorem 3) Let D be a connected symmetric digraph, G the underlying
graph of D, A a finite abelian group with the IEP, g,h € A andT' < Aut D. Assume that the
orders of g and h are equal and odd, and p(g) = h for some p € Aut A. Then

Iso(D, A, g,T') = Iso(D, A, h,T).
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Let p(> 3) be prime and Z, the cyclic group of order p. Then Zf; = Zp X Zip X L, has the IEP. Since
Z13, is the 3-dimensional vector space over Zy, the general linear group GL3(Z,) is the automorphism
group of Z3. Furthermore, GL3(Z,) acts transitively on Z3 \ {0}. Set e = e; = (100) € z.
By Theorem 2, we have Iso(D, A, g,I') = Iso(D, A, e,T') for any element g € Zg\ {0}. Thus we
consider the number of I'-isomorphism classes of e-cyclic Z%-covers of D.

Let I' < Aut D and II = GL3(Z,). Furthermore, set

Il ={c €Il | o(e) = e}.
An action of [T X T" on H'(G;Z3) is defined as follows:
(A,7)[o] = [Aa"] = {Aa” + 65 | s € C°(G; Z3)},

where A € I, v € ' and a € C(G; Zf;). By Theorem 1, the number of I'-isomorphism classes of
e-cyclic Z3-covers of D is equal to that of I, x T-orbits on H*(G; Z3).
Let A € Z;, and 7 an integer. Then we introduced two types of matrices as follows:

A 0 0 --- 0 0]

1 X 0 --- 0 0

01 X -~ 0 0 .
Dy = P B2,

00 -~ 1 X 0O

Lo o o -~ 1 )]

where 0 <7 < p? — 1,5 £ 0 (mod p + 1).
Let K = GF(p?) be the finite field with p? elements, and p be a generator of the cyclic multi-
plicative group K*. Then, identifying GL3(Z,) with GL(K), the matrix By is defined as follows:

By(r) = pT,j' € K (c.f.,[11]).

Note that ord(B;) = p? — 1, where ord() is the order of A.

Let D be a connected symmetric digraph, G the underlying graph of D, T' < Aut D, v € T,
A €Zyand 0 <i < p* —1 such that ¢ Z 0 (mod p+ 1).

A < 7 >-orbit o of length k on E(G) is called diagonal if o =< v > {z,7*(x)} for some
z € V(G). The vertex orbit <y > z and the arc orbit < v > (,v"*(z)) are also called diagonal.

Let 2 = A\, B and m = ord(z). Then a diagonal arc orbit of length 2k (the corresponding edge
orbit of length k and the corresponding vertex orbit of length 2k) is called type-1 if 2% = —1or
zF =1, and type-2 otherwise.

Let k € N. A <~ >-orbit ¢ on V(G), E(G) or D(G) is called k-divisible if | o |= 0 (mod k).
A <y >-orbit ¢ on V(G) is called edge-induced if there exists a orbit < v > {z,y} on E(G) with
T,y € 0. A k-divisible < y >-orbit o on V(G) is called strongly k-divisible if o is edge-induced

and satisfies the following condition:
If @ =< v > (z,y) is any < y >-orbit on D(G), and y = ¥/(z), z,y € o, then
J =0 (mod k).
_6_



Note that, if ¢ =< 7 > « is strongly m-divisible, | 0 |= ¢ and there exists a diagonal < -y >-orbit
Q=<7 > (z,v"%(z)) on D(Q), then Q is type-2. 4

For v € I, let G(v) be a simple graph whose vertices are the < -y >-orbits on V(G), with two
vertices adjacent in G(7) if and only if some two. of their representatives are adjacent in G. The k
th p-level of G(7) is the induced subgraph of G(7) on the vertices w such that 6(] w |) = p¥, where
6(z) is the largest power of p dividing ¢. A p-level component of G(7) is a connected component of

some p-level of G(7). :

Let z = A\,Bj and m = ord(z). Then, let G,(7) be the subgraph induced by the set of m-
divisible < v >-orbits on V(G). Note that G1(y) = G(7) for z = XA = 1. The k th p-level and
p-level components of G,(7y) are defined similarly to the case of G(y). A p-level component K of

G () is is called minimal if each o of K satisfies the condition 8(| o |) < 8(| w |) whenever w & K
and ow € E(G(%)) (c.f, [1]).
Let H be a p-level component of G, () (a 0 th p-level component of G5(vy)). Then H is called

z-favorable(0-favorable) if H satisfies one of the following conditions:

1. H is not minimal,
2. some o of H is not strongly m-divisible, or
3. some o of H is type-1 diagonal.

Otherwise H is called z-defective(0-defective). If z = A, then z-defective(z-favorable) p-level compo-

nents of G, (-y) are defective(favorable) p-level components of G(7)(see [21]).

Let A € Zy and m = ord()). For k > 1, let H be a k th p-level component of G(y). Then H
is called A-semidefective if H is not A-favorable, and some o of H is strongly m-divisible but not
strongly p-divisible. Furthermore, H is called A-strongly defective if H is minimal, and each vertex

of H is strongly pm-divisible but not type-1 diagonal.

Theorem 3 Let D be a connected symmetric digraph, G its underlying graph, p(> 3) prime,
g€ Z3\{0} and T < Aut D. Let z = X\, B}, where A € Z,,0<i <p*—1,iZ0 (mod p+1)
and m = ord(z). For v € T and z, let (), k(7, 2), u(v, 2),v(7, 2) and d(v,2) be the number
of <y >-orbits on E(Q), not m-divisible, not diagonal < v >-orbits on E(G), type-2 diagonal
< 7y >-orbits on E(G), m-divisible < v >-orbits on V(G), and z-defective p-level component
of G+(v), respectively. Fory € T and X € Zj, let vo(7, A), i1(7, A) and k1(v, A) be the number
of m-divisible, not p-divisible < v >-orbits on V(QG), p-divisible type-1 diagonal < v >-orbits
on E»(G), and pm-divisible, not diagonal < ~ >-orbits on E(G), respectively. Furthermore,
let c(v,N),d1(7,X), d2(v,A) and do(y,A) be the number of p-level components, A-favorable p-
level components, A-strongly defective p-level components and 0-favorable p-level components
of Gx(7), respectively. Then the number of I'-isomorphism classes of g-cyclic Zg-covers of D
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Iso(D,Z;’;,g,I‘) = W_l);(_mmZwer{ps(e(w)—u(m)-n(v,l)—u(w,1)+d(7,1))

+ (p+ 1)2(p — 1)p2eM=3v(rDtvo (v 1) =2u(y, D+r(r,1)=26(v,1)

+l‘1(771)+c(771)_d1 (7)1)+d2 (771)_d0 (771)+d(7’1)

+ p(p — 1)2(p 4 1)pc—3v(nD+2v0(v,1) —u(v,D)+2k1 (1, 1) —K(7,1)
+2p1(v,1)+e(v,1)—di(7,1)+2d2(v,1) —do(7,1)

+ p2 (p + 1) Ei:]z' pae(v)_zy(’hl)_V('YVA)_2""(771)_"{(77)‘)_2/1'("7’1)_”'(71A)+2d(771)+d(7>>‘)

+ p2(p — 1)(p+ 1) T87L 220D ro(r. )=y Dbrsa (1) =l Db (1, D)+, 1)
—d1 (7, 1)+d2(7,1)~do(7,1) —v (7, A) — (7, A) — (7, A)+d(7, )

+ pz Zi;; pSE(W)—ZV(’YiA)'—V(’Y?I)_2K(7’A)_'K;(’Yﬂ1)_2”(7a)‘)‘/"(711)+2d(7)>\)+d(7:1)

+ p?(p—1)(p+1) El)’\;; p2e(N) =20 (1) +vo (V) =11\ +ro (1) =R (7, A) 1 (1:A) +e(7,4)

—d1 (7,A)+d2 (v,A) =do (7,X) —v (7, 1) —p{7,1)—&(7,1)+d(v,1)
+ p3(p _.I_ 1) ZI<A<TSP—1 p36('7)"V('Y’)‘)"V('Y’T)4”(711)"K'('Ya)‘)“R('Ya'r)_’i('yyl)_/-"(’y’)‘)

—p(r,m) = (v, 1)+d(y,A)+d(v,7)+d(v,1)

+ pPp—-1) Eo<z‘<p2—1,i¢0(mod 1) p3e(N)—2v(7,B3)~2x(7,B3)—2u(7,B3)

+2d(’r,B§)—V(’Y,1)—'€(’7,1)—u(7,1)+d(%1)},
where we select only one of i and i’ such that ip = i'(mod p? — 1) in the last summation.

Proof. Let Il = GL3(Z,). By the preceding remark and Burnside’s Lemma, the number of
T'-isomorphism classes of e-cyclic Zf’,-covcrs of D is

1
- - HYG: Z3) A7) ,
T, 2 TGz
(A7)EMexI
where U(A+7) s the set consisting of the elements of U fixed by (A, 7).
Now, we have

1 ab

He:{[ﬁ ]|a,b:O,l,---,p—l;BEGLQ(ZP)}.

..__8__.



Now, there exist p? + p — 1 conjugacy classes of IIo. By Theorem 4, the representatives of these
conjugacy classes are given as follows:

1 0 0O _ : 1 0 1
tD21 1
Ai=I:3=10 1 0 ],A= ’ LAz = ,Ag=110 101,
0 0 1 ’ 01 1
1 00 Dy,
Asp =101 0 |2<A<p—1),A6p = ’ N (2<A<p-1),
| 0 0 A :
(1.0 0 .
A7x=10 X 0 (2§)\§?~1),A8,>\= (2§)\Sp—1),
0 0 D2 x

1 0 0
1
Agr-=]0 X 0 (2§>\75T§P—1),A10,i=|: Bi ](O<i<p2—1,i$é()(modp+1)).
00 7 ?

where we select only one of ¢ and 4’ such that ip = i’ (mod p®— 1) for B} (see [11]). The cardinalities
of the first, second,: - -, tenth type of conjugacy classes are as follows:

1,p* ~1,p(p— 1)(p+1),p(p — 1)*(p+ 1), p*(p+ 1), p*(p — 1) (p + 1),
PP e - D +1),2°°(p+1),0°° (- 1).
Furthermore, the number of the first, second,- - -, tenth type of conjugacy classes are as follows:
1 1
13 1) ]-7 17p - 27p - 2ap - 2,]7_ 27 §(p - 2)(p - 3)7 '2_p(p - 1)

The detail is developed in Section 3.

Let A, F € II, be conjugate. Then there exists an element C € II,, such that CAC™! = F. Thus
[a] € HY(G; Zi)(A’”’) if and only if Ao = a + 6s for some s € C°(G;Z3). But Aa” = a +6s
if and only if F(Ca)” = Ca + §(Cs), ie., [Ca] € H(G;Z3)F7). By the fact that a mapping
[a] — [Cal] is bijective, we have

. 2 — - F7
| HY(G; Z3) A7) |=| HY(G; Z) ) |

Therefore the number of I'-isomorphism classes of e-cyclic Z3 -covers of D is

1
3 1 3\(Aq,
Iso(D,Z3,e,T) = P EREFER P Z{| HY(G;Z3)(A0 |

+Hp-1p+1) | H'(G;2) A7) | +p(p - 1)(p+ D) | HY(GZg) A+ | +p(p - 1)*(p+ 1)x
p—1 p—1
| Hl(G Z3)(A4”7) ' +p p+1 Z | HI(G ZS)(As A7) | +p (p_ p+1)z | HI(G Z3)(A6 ) |
A=2 A=2
—0—



p—1 p—1
+p2 Z | Hl(G; Zi)(AmA,’Y) | +p2(p ~D(p+ 1) Z | Hl(G; Zg)(AS’)"FY) |
A=2 =2

p+1) Y [HNGZ) R | 4pP(p - 1) Y | HN(GZ) Ao |},
2<A<T<p-1 ) %

Let (A,y) €Il xT.

Case I: A=A, =1s.

Then [o] € H'(G;23)41Y) if and only if Aja” = a + 6s for some s € C°(G; Z3).

Now, let o = ae; + be; + ce3, a,b,c € C'(G;Z,), where e; = ¥(100),e; = #(010) and
ez = %(001). Furthermore, let s = vey +wey + zes, v,w,z € C°(G;Z,). Then & = a + 8s if
‘and only if a¥ = a + v, b7 = b+ bw, and ¢ = c+ 8z, i, (1,7)[a] = [a], (1,7)[b] = [b] and
(L,7)[e] = [c]. Note that [a], [b], [c] € H*(G; Z,) ). Since [ae; +bez+ces] = [a]e; +[bles+[cles,
we have

| (G 23) A |=| 1 (G2,)0) |
By Theorem 3.3 of [21], it follows that

| HY(G; zi)(Al;v) |= pPEM (D) =r(v.1)=p(y,D)+d(r,1))

Case 2: 'A = A,.
Similarly to case 1, we have

| HY(G; Z) A=) =] HY(G; 23)( P2+ | - | HY(G; Z,)7 | .-
But, *D5 ; and Dy ; are conjugate in GLs (Z,), and so ’ k
| (G Z2)( P22 || B (G5 2) P |
By Theorem 3 of [20] and Theorem 3.3 of [21], it follows that
| HY(G; Z3) A2 |= p2en)=3v(m+v0(r,1) =23, 1) w1 (1) =2(7,1)
' a0+ 1) —ds (1,1)+da (7, 1)—do (1) +(,1)

Cése 3: A=A,
Then we have

| HGZ3) %) || BY(GiZ,) 07 | | HY(G;22)P2a |
By case 2, it follows that
| HY(Gy25) ) = H (G, 23) A= |

Case 4: A = A, : v
Then D3 ; and A4 are conjugate in GL3(Z,)e, and so
| HY(G; 23) ) |=| BY(G; Z3) s |



By Theorem 3 of [20], it follows that
| H (G;Zf,)(A“’”) |= pf(7)~3u("/,1)+21/o(%1)—u(%l)+2r~1('y,l)—ﬂ(%l)
+2p1 (7,1)+e(7,1) =d1(7,1)+2d3 (7,1) —do(7,1) |

Case 5: A = Aj».
Then we have

| HY(GZ) A |=| HY(G: Z,) ) |2 | H'(Gi Z) O |
By Theorem 3.3 of [21], it follows that
| Hl(G.Z3)(A5,Aa’Y) |= p36(7)—21/(%1)~'/(%/\)—214(%1)—n(7,>\)—2u(%1)—u(w\)+2d(%1)+d(%>\)
[ ) .

Case 6: A = Ag .
Then we have

| H! (G; Zi)(As,,\ﬂ) l:| Hl(G; ZIQ))(Dz,l,'Y) | . ! Hl(G; Zp)(A"y) I ‘
By Theorem 3 of [20] and Theorem 3.3 of [21j, it follows that
| Hl(G; Zi)(As,A,a—,’Y) |= pZe(Y)—2u(‘1,1)-.!—uo (1,1) = (7, 1)+ (7, 1) =57, 1) a1 (v,1)
+e(v,1)=di (v,1)+d2(v,1) —do (7,1) = (1, ) (7, \) = (%, A)+d(7,1)

Case 7: A = Ay .
Then we have

| HY(G; Z5) A2 |=| HY(G; Zp) M) | - | HY(G; Zp) ™) | 2.

By Theorem 3.3 of [21], it follows that

| Hl(Gg Z3) A7) |= pPN =2 N = (D) =20y N) A1) =207, 0) —(1, D) +2d (7 ) +d(71)

Case 8: A = Ag ).
Then we have

| B (G Z)Box) | =] HY(G5Z2) =) || B (G;2,) 0 |
By Theorem 3 of [20] and Theorem 3.3 of [21], it follows that
| HY(G5Z3)Bor ) = pRe) =20 (r ) Hr0ln )=y )41 (1) =530 1 (1)
+e(v,A) = da (7:A) +da2 (1,2) —do (v, A) v (1,1) = (7, 1) = k(7. 1) +d(v, 1)

Case 9: A = Ay ) ..
Then we have
| H(GZ) ) | HYG 2)M) |- | B (G5 2) ) || (G Z)™) |



By Theorem 3.3 of [21], it follows that
IHl(G; Zg)(AQ,A,n”/) |=pSe(*r)-V(%l)—V(w\)—V(%T)—N(v,l)—n(%A)—n(*m)
— (1) =p(1, )= (7, m)+d(y, 1) +d(r,A) +d(,T)

Case 10: A = Ajq;.
Then we have

| (G, 2) R0 | =] HY(G;Z,) ) |- | HNGZ2) B |
By Theorem 4 of [20] and Theorem 3.3 of [21], it follows that
| HY(G; ZIP;)(Am,m) |= p3e(M)=2v(7,B3)—2r(7,B3) ~2u(7,B})+2d(v,B3)
—v(r ) —p(r,1)—s(v,1)+d(v,1)
By cases 1,2, - -+, 9 and 10, the result follows. Q.E.D.

Corollary 1 Let D be a connected symmetric digraph, G its underlying graph, p(> 3) prime
and g € Zg. Then the number of I-isomorphism classes of g-cyclic Zf,-covers‘ of D is

Iso(D,Z},9,1) = W{P‘D’B +(@+1)(p* - p? - )p*P
+ p(0° - p* —20° +p* +p+ 1)pP},
where B = B(G) =| E(G) | — | V(G) | +1 is the Betti-number of G.

Proof. Since I = {1}, we have ¢(1) =| E(G) |, u(1,2) = p1(1,A) = k1(1,A) = di1(1,)) =
do(1,A) = da(1,A) = 0, where z = A, B%. Moreover, we have

V(@) ifz=X=1, ifz=A=1,
v, =4 V@] i Wl =4 0 o fE=A=l
0 otherwise, | E(G)| otherwise,
V(G)| ifa=1, 1 ifa=1,
N = VEOTIA=L oy ay={ b A=
0 otherwise 0 otherwise.

Furthermore, we have

0 otherwise.

ﬂL@:{llM=A=l,

QED.
This is the formula for » = 3 in [16, Theorem 4.4].



3. The conjugacy classes of GL3(Z,)e
Let p an odd prime number. Then we consider all conjugacy classes of GL3(Zy)e, where e = (100)%.

Theorem 4 Let p be an odd prime. ' Then the representatives of the conjugacy classes of
GL3(Zy)e are given as follows:

100 . 10 1
A =1 D2a ~|* =
1 — 13 = 010 7A2= 1 JA'3_ D aA4_ 010 )
00 1 | 21 01 1
100 D
Asx=|0 1 0 (23A3p—1),A6,A=[ 21 /\](295;)—1),
00 A '
10 0 | .
Azx=[0 X 0 (2§/\Sp”1)1A8,>\=|: b ](QSASP—U,
0 0 : 22
100 )
Agrr=]0 X 0 (2§A¢T§p—1),Alo,i=[ Bi }(0<i<p2—1,i¢0(modp+1))-

Proof. Let IT = GL3(Z;). Then we have

1 ab :
He={[ ¢ ]|a,b=0,‘1,~-',p—1;BeGLz(Zp)}.

0 B
Now, let
1
cd,B’:st,Dzkl,
0 D u v m n

1 .00 '
A= F=
0 B
where ¢,d =0,1,---,p— 1;B,D € GLy(Z,). Then we have

FiaF=| 1+ 8
0 D-!BD

)

where .
a=c+1/|D|{=(en—dm)(sk + tm) + (cl - dk)(uk + vm)},
B=d+1/|D|{~(cn—dm)(sl +tn) + (cl — dk)(ul +vn)}.

Next, we consider the condition for B and D to satisfy the equation D~1BD = B. Suppose that
BD = DB. Then we have

sk+ul thk+ vl

sm+un tm+ovn

BD =

sk+tm sl+tn DB =
uk +vm - ul+vn




If BD = DB, then
sk+tm = sk +ul
ul =tm

l+tn =tk l

st in tv i.e, ¢ tn—k)=1Il(v—2s)
uk +vm = sm+un :
u(n —k) = m(v — s)
ul +vn =tm + vn o
Thus, the (1,2)-array of F~1AF is

: "¢+ 1/ | D| (Im —nk)(cs + du) = (1 = s)c— ud.
Furthermore, the (1, 3)-array of F~'AF is

d+1/|D | (Im—nk)(ct + dv) = —tc+ (1 — v)d.

For any a,b € Z,, set

1-s)c—ud=a
—tc+(l—v)d=b>
Then, there exist ¢,d € Z, satisfying (%) if and only if
det(I — B) = det(I — B*) = det l: 1 —ts v :| #0,

1—wv

i.e., I = B is regular. Note that I — B is not regular if and only if 1 is one of the eigenvalues of B.
But, the representatives of conjugacy classes of GLy(Z,,) are given as follows:

N B 0 »
C,\Zl)\ A](1§ASP—1)7D2,,\=[i\v)\](lﬁ)\ﬁp—l),

i ] (1<A#7<p-1),By(0<i<p®—1,i#0 (modp+1)),

B)\,T: [ A

where we select only one of ¢ and i’ such that ip = i'(mod p? — 1) for B} (see [11]). The cardinalities

and the number of the first, second,- - -, fourth type of conjugacy classes are as follows:

L=+ 1),plp+1),pp-1ip-1Lp-1, -;—(p;— D(p-2), w;*p(p -1).

Then each of matrices Cj, Dy (2<A<p—1)and By ,(2< A # 7 <p-—1) does not contain
1 as its eigenvalue. By Lemma 5 of [20], each B5(0 < i < p®—1,i # 0 (mod p + 1)) does not
contain 1 as its eigenvalue. Thus,

1 ab
B

F'AF =

} for any a,b € Z,,

where B = Cj, D3 5, By -, B}. Therefore the following four matrices are given as the representatives
of conjugacy classes of GL2(Zy)e:

](25/\527—1),

100 .
0 X 0 (2§>\§p—1),[
0 0 A * 2



1 0 0O !
1
0 XA 0 (ZS)\#TSp—l),[ .Bi}(0<i<p2—1,i$é0(modp+1));
00 7 2

The cardinalities and the number of the above four types of conjugacy classes are as follows:
’ 1 1
PLp (= 1)(p+1),p°(p+ 1), (P 1);p = 22— 2,5(p = 2) (P~ 3), 5p(p — 1)-

The representatives of conjugacy classes of GLa(Z,) which contain 1 as eigenvalues are given as

follows: .
1 10 1
Ci=L= , Do = B, = 2<A<p—1).
1 2 l: 1} 2,1 [1 1], 1,2 [ )\jl( = _.‘P )

Case 1: B = C;. : SRR : :
F'IbF =13 for any F € GLy(Zp)e.
Next, let ‘ ’

>
I
OO
Q= =
Il
—
[«
O
O o
| I—
Il
| e |
3 o
[ ISR
—
Q
3
|
Qo
3
H
RS

Then we have

for any a,b € Z,.

Therefore - the 'following two matrices are given as the representatives of conjugacy classes of

GL3(Zp)e:

11
I,[ 0 1
00

= O O

The cardinalities and the number of the above two types of conjugacy classes are as follows:
1,p? —1;1,1.

Case2: B=Dy;.
Then, let

>

I
S O =
= = O

Then we have



for any a € Z,,.
Next, let

—_ O e
5|
Il
| au—}
—
o
|
Q
_|_
3
|
w)
I
—
o>
o
| —— |
~~
o>
S
o
\../

Then we have

for any a € Z, and b € Zj,.

Therefore the following two matrices are given as the representatives of conjugacy classes of

GLQ(Zp)e:

1 0
01
01

= O O

1
, | O
0

== O
—_ O

The cardinalities and the number of the above two types of conjugacy classes are as follows:

plp—1)(p+1),p(p—1)%(p+1); 1,1.

Case 3: B =B, ).

Then, let
1 00
' 1 ¢ (=X kE 0
A=}01 0 |,F= , , D= k 0).
{O D ] [O 'n,:|(n;‘é )
0 0 A
Then we have
1 0 b
F'AF={0 1 0
' 0 0 A
for any b € Z,,.
Next, let
1 1 0
1 ¢ b(1—N)"t a 0
A=|01 0 |,F= , D= 0
{0 D 0 n (an #0)
0 0 X ) :

Then we have

for any a € Z}, and b € Z,,.



Therefore - the following two matrices are given as the representatives of conjugacy classes of
GLy(Zy)e: '

1 00 110
001 0](2<A<p—-1),j0 1 0} (@2<A<p—1).
0 0 A ' 00 x|

The cardinalities and the number of the above two types of conjugacy classes are as follows:

p’(p+1),p’(p—1(p+1);p—2,p—2.

Q.E.D.
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