Isomorphisms of Some Cyclic Abelian Covers of Symmetric Digraphs II

Hirobumi MIZUNO

Department of Electronics and Computer Science, Meisei University, 2-590, Nagabuti, Ome, Tokyo 198-8655, JAPAN.

and

Iwao SATO*

Oyama National College of Technology, Oyama, Tochigi 323-0806, JAPAN.

Abstract

Let D be a connected symmetric digraph, \mathbf{Z}_p a cyclic group of prime order p(>3) and Γ a group of automorphisms of D. We enumerate the number of Γ -isomorphism classes of g-cyclic \mathbf{Z}_p^3 -covers of D for any nonunit $g \in \mathbf{Z}_p^3$, where \mathbf{Z}_p^3 is the direct sum of three \mathbf{Z}_p .

1. Introduction

Graphs and digraphs treated here are finite and simple.

Let D be a symmetric digraph and A a finite group. A function $\alpha : A(D) \longrightarrow A$ is called alternating if $\alpha(y, x) = \alpha(x, y)^{-1}$ for each $(x, y) \in A(D)$. For $g \in A$, a <u>g-cyclic A-cover</u> (or g-cyclic cover) $D_g(\alpha)$ of D is the digraph as follows:

 $V(D_g(\alpha)) = V(D) \times A$, and $((u, h), (v, k)) \in A(D_g(\alpha))$ if and only if $(u, v) \in A(D)$ and $k^{-1}h\alpha(u, v) = g$.

The <u>natural projection</u> $\pi: D_g(\alpha) \longrightarrow D$ is a function from $V(D_g(\alpha))$ onto V(D) which erases the second coordinates. A digraph D' is called a cyclic A-cover of D if D' is a g-cyclic A-cover of D for some $g \in A$. In the case that A is abelian, then $D_g(\alpha)$ is simply called a cyclic abelian cover.

Let α and β be two alternating functions from A(D) into A, and let Γ be a subgroup of the automorphism group $Aut \ D$ of D, denoted $\Gamma \leq Aut \ D$. Let $g, h \in A$. Then two cyclic A-covers $D_g(\alpha)$ and $D_h(\beta)$ are called Γ -isomorphic, denoted $D_g(\alpha) \cong_{\Gamma} D_h(\beta)$, if there exist an isomorphism $\Phi: D_g(\alpha) \longrightarrow D_h(\beta)$ and a $\gamma \in \Gamma$ such that $\pi \Phi = \gamma \pi$, i.e., the diagram

-3-

^{*} Supported by Grant-in-Aid for Science Research (C)

commutes. Let $I = \{1\}$ be the trivial subgroup of automorphisms.

Cheng and Wells [1] discussed isomorphism classes of cyclic triple covers (1-cyclic \mathbb{Z}_3 -covers) of a complete symmetric digraph. Mizuno and Sato [16,18] enumerated the number of *I*-isomorphism classes of *g*-cyclic \mathbb{Z}_p^n -covers and *g*-cyclic \mathbb{Z}_{p^n} -covers, and Γ -isomorphism classes of *g*-cyclic \mathbb{Z}_p -covers of a connected symmetric digraph *D* for any prime p(> 2). Furthermore, Mizuno, Lee and Sato [15] gave a formula for the the number of *I*-isomorphism classes of connected *g*-cyclic \mathbb{Z}_p^n -covers and connected *g*-cyclic \mathbb{Z}_{p^n} -covers of *D* for any prime p(> 2). Mizuno and Sato [16] gave a formula for the enumeration of Γ -isomorphism classes of *g*-cyclic $\mathbb{Z}_p \times \mathbb{Z}_p$ -covers of *D* for any prime p(> 2).

Let G be a graph and A a finite group. Let D(G) be the arc set of the symmetric digraph corresponding to G. Then a mapping $\alpha : D(G) \longrightarrow A$ is called an <u>ordinary voltage assignment</u> if $\alpha(v, u) = \alpha(u, v)^{-1}$ for each $(u, v) \in D(G)$. The (<u>ordinary</u>) <u>derived graph</u> G^{α} derived from an ordinary voltage assignment α is defined as follows:

$$V(G^{\alpha}) = V(G) \times A$$
, and $((u, h), (v, k)) \in D(G^{\alpha})$ if and only if $(u, v) \in D(G)$
and $k = h\alpha(u, v)$.

The graph G^{α} is called an <u>A</u>-covering of G. The A-covering G^{α} is an |A|-fold regular covering of G. Every regular covering of G is an A-covering of G for some group A (see [3]). Furthermore the 1-cyclic A-cover $D_1(\alpha)$ of a symmetric digraph D can be considered as the A-covering \tilde{D}^{α} of the underlying graph \tilde{D} of D.

A general theory of graph coverings is developed in [4]. \mathbb{Z}_2 -coverings (double coverings) of graphs were dealed in [5] and [22]. Hofmeister [6] and, independently, Kwak and Lee [12] enumerated the *I*isomorphism classes of *n*-fold coverings of a graph, for any $n \in \mathbb{N}$. Dresbach [2] obtained a formula for the number of strong isomorphism classes of regular coverings of graphs with voltages in finite fields. The *I*-isomorphism classes of regular coverings of graphs with voltages in finite dimensional vector spaces over finite fields were enumerated by Hofmeister [7]. Hong, Kwak and Lee [9] gave the number of *I*-isomorphism classes of \mathbb{Z}_n -coverings, $\mathbb{Z}_p \bigoplus \mathbb{Z}_p$ -coverings and D_n -coverings, *n*:odd, of graphs, respectively. Mizuno and Sato [19,20,21] presented the numbers of Γ -isomorphism classes of \mathbb{Z}_p^n -coverings of graphs for n = 1, 2, 3 and any prime p(> 2).

In the case of connected coverings, Kwak and Lee [14] enumerated the *I*-isomorphism classes of connected *n*-fold coverings of a graph G. Furthermore, Kwak, Chun and Lee [13] gave some formulas for the number of *I*-isomorphism classes of connected *A*-coverings of G when A is a finite abelian group or D_n .

We present the number of Γ -isomorphism classes of g-cyclic \mathbb{Z}_p^3 -covers of connected symmetric digraphs for any element $g \neq 0 \in \mathbb{Z}_p^3$, where 0 is the unit of \mathbb{Z}_p^3 and any prime p(>3).

-4----

2. Isomorphisms of cyclic \mathbf{Z}_p^3 -covers

Let D be a connected symmetric digraph and A a finite abelian group. The group Γ of automorphisms of D acts on the set C(D) of alternating functions from A(D) into A as follows:

$$\alpha^{\gamma}(x,y) = \alpha(\gamma(x),\gamma(y)) \text{ for all } (x,y) \in A(D),$$

where $\alpha \in C(D)$ and $\gamma \in \Gamma$.

Let G be the underlying graph of D. The set of ordinary voltage assignments of G with voltages in A is denoted by $C^1(G; A)$. Note that $C(D) = C^1(G; A)$. Furthremore, let $C^0(G; A)$ be the set of functions from V(G) into A. We consider $C^0(G; A)$ and $C^1(G; A)$ as additive groups. The homomorphism $\delta : C^0(G; A) \longrightarrow C^1(G; A)$ is defined by $(\delta s)(x, y) = s(x) - s(y)$ for $s \in$ $C^0(G; A)$ and $(x, y) \in A(D)$. The <u>1-cohomology group</u> $H^1(G; A)$ with coefficients in A is defined by $H^1(G; A) = C^1(G; A)/Im \,\delta$. For each $\alpha \in C^1(G; A)$, let $[\alpha]$ be the element of $H^1(G; A)$ which contains α .

The automorphism group Aut A acts on $C^0(G; A)$ and $C^1(G; A)$ as follows:

$$(\sigma s)(x) = \sigma(s(x)) \text{ for } x \in V(D),$$

 $(\sigma \alpha)(x,y) = \sigma(\alpha(x,y)) \text{ for } (x,y) \in A(D),$

where $s \in C^0(G; A)$, $\alpha \in C^1(G; A)$ and $\sigma \in Aut A$. A finite group B is said to have the isomorphism extension property(IEP), if every isomorphism between any two isomorphic subgroups \mathcal{E}_1 and \mathcal{E}_2 of B can be extended to an automorphism of B (see [9]). For example, the cyclic group \mathbb{Z}_n for $n \in \mathbb{N}$, the dihedral group \mathbb{D}_n for odd $n \geq 3$, and the direct sum of m copies of $\mathbb{Z}_p(p)$: prime) have the IEP.

Mizuno and Sato [18] gave a characterization for two cyclic A-covers of D to be Γ -isomorphic.

Theorem 1 (18, Corollary 3) Let D be a connected symmetric digraph, G the underlying graph of D, A a finite abelian group with the IEP, $g \in A$, $\alpha, \beta \in C(D)$ and $\Gamma \leq Aut D$. Assume that the order of g is odd. Then the following are equivalent:

1. $D_q(\alpha) \cong {}_{\Gamma} D_q(\beta).$

2. There exist $\gamma \in \Gamma$, $\sigma \in Aut \ A$ and $s \in C^0(G; A)$ such that

$$\beta = \sigma \alpha^{\gamma} + \delta s \text{ and } \sigma(g) = g.$$

Let $Iso(D, A, g, \Gamma)$ denote the number of Γ -isomorphism classes of g-cyclic A-covers of D. The following result holds.

Theorem 2 (18, Theorem 3) Let D be a connected symmetric digraph, G the underlying graph of D, A a finite abelian group with the IEP, $g, h \in A$ and $\Gamma \leq Aut$ D. Assume that the orders of g and h are equal and odd, and $\rho(g) = h$ for some $\rho \in Aut$ A. Then

$$Iso(D, A, g, \Gamma) = Iso(D, A, h, \Gamma).$$

Let p(>3) be prime and \mathbb{Z}_p the cyclic group of order p. Then $\mathbb{Z}_p^3 = \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$ has the IEP. Since \mathbb{Z}_p^3 is the 3-dimensional vector space over \mathbb{Z}_p , the general linear group $GL_3(\mathbb{Z}_p)$ is the automorphism group of \mathbb{Z}_p^3 . Furthermore, $GL_3(\mathbb{Z}_p)$ acts transitively on $\mathbb{Z}_p^3 \setminus \{0\}$. Set $\mathbf{e} = \mathbf{e}_1 = (100)^t \in \mathbb{Z}_p^3$. By Theorem 2, we have $Iso(D, A, g, \Gamma) = Iso(D, A, \mathbf{e}, \Gamma)$ for any element $g \in \mathbb{Z}_p^3 \setminus \{0\}$. Thus we consider the number of Γ -isomorphism classes of \mathbf{e} -cyclic \mathbb{Z}_p^3 -covers of D.

Let $\Gamma \leq Aut \ D$ and $\Pi = GL_3(\mathbf{Z}_p)$. Furthermore, set

$$\Pi_{\mathbf{e}} = \{ \sigma \in \Pi \mid \sigma(\mathbf{e}) = \mathbf{e} \}.$$

An action of $\Pi_{\mathbf{e}} \times \Gamma$ on $H^1(G; \mathbf{Z}^3_p)$ is defined as follows:

$$(\mathbf{A},\gamma)[\alpha] = [\mathbf{A}\alpha^{\gamma}] = \{\mathbf{A}\alpha^{\gamma} + \delta s \mid s \in C^{0}(G; \mathbf{Z}_{p}^{3})\},\$$

where $\mathbf{A} \in \Pi_{\mathbf{e}}, \ \gamma \in \Gamma$ and $\alpha \in C^1(G; \mathbf{Z}_p^3)$. By Theorem 1, the number of Γ -isomorphism classes of \mathbf{e} -cyclic \mathbf{Z}_p^3 -covers of D is equal to that of $\Pi_{\mathbf{e}} \times \Gamma$ -orbits on $H^1(G; \mathbf{Z}_p^3)$.

Let $\lambda \in \mathbf{Z}_p^*$ and i an integer. Then we introduced two types of matrices as follows:

$$D_{n,\lambda} = egin{bmatrix} \lambda & 0 & 0 & \cdots & 0 & 0 \ 1 & \lambda & 0 & \cdots & 0 & 0 \ 0 & 1 & \lambda & \cdots & 0 & 0 \ dots & dots & \ddots & \ddots & dots & dots \ dots & dots & \ddots & \ddots & dots & dots \ 0 & 0 & \cdots & 1 & \lambda & 0 \ 0 & 0 & 0 & \cdots & 1 & \lambda \end{bmatrix}, \mathbf{B}_2^i,$$

where $0 \le i < p^2 - 1, i \ne 0 \pmod{p+1}$.

Let $K = GF(p^2)$ be the finite field with p^2 elements, and ρ be a generator of the cyclic multiplicative group K^* . Then, identifying $GL_2(\mathbf{Z}_p)$ with GL(K), the matrix \mathbf{B}_2 is defined as follows:

$$\mathbf{B}_{2}(\tau) = \rho \tau, \tau \in K \ (c.f., [11]).$$

Note that $ord(\mathbf{B}_2) = p^2 - 1$, where $ord(\lambda)$ is the order of λ .

Let D be a connected symmetric digraph, G the underlying graph of D, $\Gamma \leq Aut D$, $\gamma \in \Gamma$, $\lambda \in \mathbb{Z}_p^*$ and $0 \leq i < p^2 - 1$ such that $i \neq 0 \pmod{p+1}$.

A < γ >-orbit σ of length k on E(G) is called <u>diagonal</u> if $\sigma = \langle \gamma \rangle \{x, \gamma^k(x)\}$ for some $x \in V(G)$. The vertex orbit $\langle \gamma \rangle x$ and the arc orbit $\langle \gamma \rangle (x, \gamma^k(x))$ are also called <u>diagonal</u>.

Let $z = \lambda$, \mathbf{B}_2^i and m = ord(z). Then a diagonal arc orbit of length 2k (the corresponding edge orbit of length k and the corresponding vertex orbit of length 2k) is called <u>type-1</u> if $z^k = -1$ or $z^k = -\mathbf{I}$, and type-2 otherwise.

Let $k \in \mathbb{N}$. A $< \gamma >$ -orbit σ on V(G), E(G) or D(G) is called <u>k-divisible</u> if $|\sigma| \equiv 0 \pmod{k}$. A $< \gamma >$ -orbit σ on V(G) is called <u>edge-induced</u> if there exists a orbit $< \gamma > \{x, y\}$ on E(G) with $x, y \in \sigma$. A k-divisible $< \gamma >$ -orbit σ on V(G) is called <u>strongly k-divisible</u> if σ is edge-induced and satisfies the following condition:

If $\Omega = \langle \gamma \rangle (x, y)$ is any $\langle \gamma \rangle$ -orbit on D(G), and $y = \gamma^j(x), x, y \in \sigma$, then $j \equiv 0 \pmod{k}$.

Note that, if $\sigma = \langle \gamma \rangle x$ is strongly *m*-divisible, $|\sigma| = t$ and there exists a diagonal $\langle \gamma \rangle$ -orbit $\Omega = \langle \gamma \rangle (x, \gamma^{t/2}(x))$ on D(G), then Ω is type-2.

For $\gamma \in \Gamma$, let $G(\gamma)$ be a simple graph whose vertices are the $\langle \gamma \rangle$ -orbits on V(G), with two vertices adjacent in $G(\gamma)$ if and only if some two of their representatives are adjacent in G. The k th <u>p-level</u> of $G(\gamma)$ is the induced subgraph of $G(\gamma)$ on the vertices ω such that $\theta(|\omega|) = p^k$, where $\theta(i)$ is the largest power of p dividing i. A <u>p-level component</u> of $G(\gamma)$ is a connected component of some p-level of $G(\gamma)$.

Let $z = \lambda$, \mathbf{B}_2^i and m = ord(z). Then, let $G_z(\gamma)$ be the subgraph induced by the set of *m*divisible $\langle \gamma \rangle$ -orbits on V(G). Note that $G_1(\gamma) = G(\gamma)$ for $z = \lambda = 1$. The *k* th <u>p-level</u> and <u>p-level components</u> of $G_z(\gamma)$ are defined similarly to the case of $G(\gamma)$. A p-level component *K* of $\overline{G_z(\gamma)}$ is is called <u>minimal</u> if each σ of *K* satisfies the condition $\theta(|\sigma|) < \theta(|\omega|)$ whenever $\omega \notin K$ and $\sigma \omega \in E(G(\gamma))$ (c.f., [1]).

Let H be a p-level component of $G_z(\gamma)$ (a 0 th p-level component of $G_\lambda(\gamma)$). Then H is called z-favorable(0-favorable) if H satisfies one of the following conditions:

1. H is not minimal,

2. some σ of H is not strongly m-divisible, or

3. some σ of H is type-1 diagonal.

Otherwise H is called <u>z-defective(0-defective)</u>. If $z = \lambda$, then z-defective(z-favorable) p-level components of $G_z(\gamma)$ are defective(favorable) p-level components of $G_\lambda(\gamma)$ (see [21]).

Let $\lambda \in \mathbf{Z}_p^*$ and $m = ord(\lambda)$. For $k \ge 1$, let H be a k th p-level component of $G_{\lambda}(\gamma)$. Then H is called $\underline{\lambda}$ -semidefective if H is not λ -favorable, and some σ of H is strongly m-divisible but not strongly p-divisible. Furthermore, H is called $\underline{\lambda}$ -strongly defective if H is minimal, and each vertex of H is strongly pm-divisible but not type-1 diagonal.

Theorem 3 Let D be a connected symmetric digraph, G its underlying graph, p(>3) prime, $g \in \mathbf{Z}_p^3 \setminus \{\mathbf{0}\}$ and $\Gamma \leq Aut D$. Let $z = \lambda$, \mathbf{B}_2^i , where $\lambda \in \mathbf{Z}_p^*$, $0 \leq i < p^2 - 1, i \not\equiv 0 \pmod{p+1}$ and m = ord(z). For $\gamma \in \Gamma$ and z, let $\epsilon(\gamma)$, $\kappa(\gamma, z), \mu(\gamma, z), \nu(\gamma, z)$ and $d(\gamma, z)$ be the number of $< \gamma >$ -orbits on E(G), not m-divisible, not diagonal $< \gamma >$ -orbits on E(G), type-2 diagonal $< \gamma >$ -orbits on E(G), m-divisible $< \gamma >$ -orbits on V(G), and z-defective p-level component of $G_z(\gamma)$, respectively. For $\gamma \in \Gamma$ and $\lambda \in \mathbf{Z}_p^*$, let $\nu_0(\gamma, \lambda), \mu_1(\gamma, \lambda)$ and $\kappa_1(\gamma, \lambda)$ be the number of m-divisible, not p-divisible $< \gamma >$ -orbits on V(G), p-divisible type-1 diagonal $< \gamma >$ -orbits on E(G), and pm-divisible, not diagonal $< \gamma >$ -orbits on E(G), respectively. Furthermore, let $c(\gamma, \lambda), d_1(\gamma, \lambda), d_2(\gamma, \lambda)$ and $d_0(\gamma, \lambda)$ be the number of p-level components, λ -favorable plevel components, λ -strongly defective p-level components and 0-favorable p-level components of $G_\lambda(\gamma)$, respectively. Then the number of Γ -isomorphism classes of g-cyclic \mathbf{Z}_p^3 -covers of D

-7--

is

$$Iso(D, \mathbf{Z}_p^3, g, \Gamma) = \frac{1}{p^3(p-1)^2(p+1)|\Gamma|} \sum_{\gamma \in \Gamma} \{ p^{3(\epsilon(\gamma) - \nu(\gamma, 1) - \kappa(\gamma, 1) - \mu(\gamma, 1) + d(\gamma, 1))}$$

$$+ (p+1)^2(p-1)p^{2\epsilon(\gamma)-3\nu(\gamma,1)+\nu_0(\gamma,1)-2\mu(\gamma,1)+\kappa_1(\gamma,1)-2\kappa(\gamma,1)}$$

 $+\mu_1(\gamma,1)+c(\gamma,1)-d_1(\gamma,1)+d_2(\gamma,1)-d_0(\gamma,1)+d(\gamma,1)$

+
$$p(p-1)^2(p+1)p^{\epsilon(\gamma)-3\nu(\gamma,1)+2\nu_0(\gamma,1)-\mu(\gamma,1)+2\kappa_1(\gamma,1)-\kappa(\gamma,1)}$$

$$+2\mu_1(\gamma,1)+c(\gamma,1)-d_1(\gamma,1)+2d_2(\gamma,1)-d_0(\gamma,1)$$

+
$$p^2(p+1)\sum_{\lambda=2}^{p-1}p^{3\epsilon(\gamma)-2\nu(\gamma,1)-\nu(\gamma,\lambda)-2\kappa(\gamma,1)-\kappa(\gamma,\lambda)-2\mu(\gamma,1)-\mu(\gamma,\lambda)+2d(\gamma,1)+d(\gamma,\lambda)}$$

+
$$p^2(p-1)(p+1)\sum_{\lambda=2}^{p-1}p^{2\epsilon(\gamma)-2\nu(\gamma,1)+\nu_0(\gamma,1)-\mu(\gamma,1)+\kappa_1(\gamma,1)-\kappa(\gamma,1)+\mu_1(\gamma,1)+c(\gamma,1)}$$

$$-d_1(\gamma,1)+d_2(\gamma,1)-d_0(\gamma,1)-\nu(\gamma,\lambda)-\mu(\gamma,\lambda)-\kappa(\gamma,\lambda)+d(\gamma,\lambda)$$

+
$$p^2 \sum_{\lambda=2}^{p-1} p^{3\epsilon(\gamma)-2\nu(\gamma,\lambda)-\nu(\gamma,1)-2\kappa(\gamma,\lambda)-\kappa(\gamma,1)-2\mu(\gamma,\lambda)-\mu(\gamma,1)+2d(\gamma,\lambda)+d(\gamma,1)}$$

$$p^{2}(p-1)(p+1)\sum_{\lambda=2}^{p-1}p^{2\epsilon(\gamma)-2\nu(\gamma,\lambda)+\nu_{0}(\gamma,\lambda)-\mu(\gamma,\lambda)+\kappa_{0}(\gamma,\lambda)-\kappa(\gamma,\lambda)+\mu_{1}(\gamma,\lambda)+c(\gamma,\lambda)}$$

$$-d_1(\gamma,\lambda)+d_2(\gamma,\lambda)-d_0(\gamma,\lambda)-\nu(\gamma,1)-\mu(\gamma,1)-\kappa(\gamma,1)+d(\gamma,1)$$

+
$$p^{3}(p+1)\sum_{1<\lambda<\tau\leq p-1}p^{3\epsilon(\gamma)-\nu(\gamma,\lambda)-\nu(\gamma,\tau)-\nu(\gamma,1)-\kappa(\gamma,\lambda)-\kappa(\gamma,\tau)-\kappa(\gamma,1)-\mu(\gamma,\lambda)}$$

$$-\mu(\gamma,\tau)-\mu(\gamma,1)+d(\gamma,\lambda)+d(\gamma,\tau)+d(\gamma,1)$$

$$- p^{3}(p-1) \sum_{0 < i < p^{2}-1, i \not\equiv 0 (mod \ p+1)} p^{3\epsilon(\gamma) - 2\nu(\gamma, \mathbf{B}_{2}^{i}) - 2\kappa(\gamma, \mathbf{B}_{2}^{i}) - 2\mu(\gamma, \mathbf{B}_{2}^{i})}$$

$$+2d(\gamma, \mathbf{B}_2^i) - \nu(\gamma, 1) - \kappa(\gamma, 1) - \mu(\gamma, 1) + d(\gamma, 1) \}$$

where we select only one of i and i' such that $ip \equiv i' \pmod{p^2 - 1}$ in the last summation.

Proof. Let $\Pi = GL_3(\mathbf{Z}_p)$. By the preceding remark and Burnside's Lemma, the number of Γ -isomorphism classes of e-cyclic \mathbf{Z}_p^3 -covers of D is

$$\frac{1}{\mid \Pi_{\mathbf{e}}\mid\cdot\mid\Gamma\mid}\sum_{(\mathbf{A},\gamma)\in\Pi_{\mathbf{e}}\times\Gamma}\mid H^{1}(G;\mathbf{Z}_{p}^{3})^{(\mathbf{A},\gamma)}\mid$$

where $U^{(\mathbf{A},\gamma)}$ is the set consisting of the elements of U fixed by (\mathbf{A},γ) .

Now, we have

$$\Pi_{\mathbf{e}} = \left\{ \begin{bmatrix} 1 & a & b \\ \mathbf{0} & \mathbf{B} \end{bmatrix} \mid a, b = 0, 1, \cdots, p-1; \mathbf{B} \in GL_2(\mathbf{Z}_p) \right\}$$

Now, there exist $p^2 + p - 1$ conjugacy classes of Π_e . By Theorem 4, the representatives of these conjugacy classes are given as follows:

$$\begin{split} \mathbf{A}_{1} &= \mathbf{I}_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{A}_{2} = \begin{bmatrix} {}^{t}\mathbf{D}_{2,1} \\ 1 \end{bmatrix}, \mathbf{A}_{3} = \begin{bmatrix} 1 \\ \mathbf{D}_{2,1} \end{bmatrix}, \mathbf{A}_{4} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \\ \mathbf{A}_{5,\lambda} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \end{bmatrix} (2 \le \lambda \le p - 1), \mathbf{A}_{6,\lambda} = \begin{bmatrix} {}^{t}\mathbf{D}_{2,1} \\ \lambda \end{bmatrix} (2 \le \lambda \le p - 1), \\ \mathbf{A}_{7,\lambda} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} (2 \le \lambda \le p - 1), \mathbf{A}_{8,\lambda} = \begin{bmatrix} 1 \\ \mathbf{D}_{2,\lambda} \end{bmatrix} (2 \le \lambda \le p - 1), \\ \mathbf{A}_{9,\lambda,\tau} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \tau \end{bmatrix} (2 \le \lambda \ne \tau \le p - 1), \\ \mathbf{A}_{10,i} &= \begin{bmatrix} 1 \\ \mathbf{B}_{2}^{i} \end{bmatrix} (0 < i < p^{2} - 1, i \ne 0 \pmod{p + 1}). \end{split}$$

where we select only one of i and i' such that $ip \equiv i' \pmod{p^2 - 1}$ for \mathbf{B}_2^i (see [11]). The cardinalities of the first, second, \cdots , tenth type of conjugacy classes are as follows:

$$\begin{split} 1, p^2 - 1, p(p-1)(p+1), p(p-1)^2(p+1), p^2(p+1), p^2(p-1)(p+1), \\ p^2, p^2(p-1)(p+1), p^3(p+1), p^3(p-1). \end{split}$$

Furthermore, the number of the first, second, ..., tenth type of conjugacy classes are as follows:

$$1, 1, 1, 1, p-2, p-2, p-2, p-2, rac{1}{2}(p-2)(p-3), rac{1}{2}p(p-1).$$

The detail is developed in Section 3.

Let $\mathbf{A}, \mathbf{F} \in \Pi_{\mathbf{e}}$ be conjugate. Then there exists an element $\mathbf{C} \in \Pi_{\mathbf{e}}$ such that $\mathbf{CAC}^{-1} = \mathbf{F}$. Thus $[\alpha] \in H^1(G; \mathbf{Z}_p^3)^{(\mathbf{A}, \gamma)}$ if and only if $\mathbf{A}\alpha^{\gamma} = \alpha + \delta s$ for some $s \in C^0(G; \mathbf{Z}_p^3)$. But $\mathbf{A}\alpha^{\gamma} = \alpha + \delta s$ if and only if $\mathbf{F}(\mathbf{C}\alpha)^{\gamma} = \mathbf{C}\alpha + \delta(\mathbf{C}s)$, i.e., $[\mathbf{C}\alpha] \in H^1(G; \mathbf{Z}_p^3)^{(\mathbf{F}, \gamma)}$. By the fact that a mapping $[\alpha] \longmapsto [\mathbf{C}\alpha]$ is bijective, we have

$$| H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}, \gamma)} | = | H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{F}, \gamma)} |$$

Therefore the number of Γ -isomorphism classes of e-cyclic \mathbf{Z}_p^3 -covers of D is

$$Iso(D, \mathbf{Z}_{p}^{3}, \mathbf{e}, \Gamma) = \frac{1}{p^{3}(p-1)^{2}(p+1) \mid \Gamma \mid} \sum_{\gamma \in \Gamma} \{ \mid H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{1}, \gamma)} \mid P_{1} \mid P_{1} \mid P_{2} \mid P_{2}$$

$$+(p-1)(p+1) \mid H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{2}, \gamma)} \mid +p(p-1)(p+1) \mid H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{3}, \gamma)} \mid +p(p-1)^{2}(p+1) \times \\ \mid H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{4}, \gamma)} \mid +p^{2}(p+1) \sum_{\lambda=2}^{p-1} \mid H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{5,\lambda}, \gamma)} \mid +p^{2}(p-1)(p+1) \sum_{\lambda=2}^{p-1} \mid H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{5,\lambda}, \gamma)}$$

$$+p^{2} \sum_{\lambda=2}^{p-1} | H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{7,\lambda},\gamma)} | +p^{2}(p-1)(p+1) \sum_{\lambda=2}^{p-1} | H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{8,\lambda},\gamma)} | \\+p^{3}(p+1) \sum_{2 \leq \lambda < \tau \leq p-1} | H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{9,\lambda,\tau},\gamma)} | +p^{3}(p-1) \sum_{i} | H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{10,i},\gamma)} | \}$$

Let $(\mathbf{A}, \gamma) \in \Pi_{\mathbf{e}} \times \Gamma$.

Case 1: $\mathbf{A} = \mathbf{A}_1 = \mathbf{I}_3$.

Then
$$[\alpha] \in H^1(G; \mathbb{Z}_p^3)^{(\mathbb{A}_1, \gamma)}$$
 if and only if $\mathbb{A}_1 \alpha^{\gamma} = \alpha + \delta s$ for some $s \in C^0(G; \mathbb{Z}_p^3)$.

Now, let $\alpha = a\mathbf{e}_1 + b\mathbf{e}_2 + c\mathbf{e}_3$, $a, b, c \in C^1(G; \mathbf{Z}_p)$, where $\mathbf{e}_1 = {}^t(100), \mathbf{e}_2 = {}^t(010)$ and $\mathbf{e}_3 = {}^t(001)$. Furthermore, let $s = v\mathbf{e}_1 + w\mathbf{e}_2 + z\mathbf{e}_3$, $v, w, z \in C^0(G; \mathbf{Z}_p)$. Then $\alpha^{\gamma} = \alpha + \delta s$ if and only if $a^{\gamma} = a + \delta v$, $b^{\gamma} = b + \delta w$, and $c^{\gamma} = c + \delta z$, i.e., $(1, \gamma)[a] = [a], (1, \gamma)[b] = [b]$ and $(1, \gamma)[c] = [c]$. Note that $[a], [b], [c] \in H^1(G; \mathbf{Z}_p)^{(1, \gamma)}$. Since $[a\mathbf{e}_1 + b\mathbf{e}_2 + c\mathbf{e}_3] = [a]\mathbf{e}_1 + [b]\mathbf{e}_2 + [c]\mathbf{e}_3$, we have

$$| H^1(G; \mathbf{Z}_p^3)^{(\mathbf{A}_1, \gamma)} | = | H^1(G; \mathbf{Z}_p)^{(1, \gamma)} |^3.$$

By Theorem 3.3 of [21], it follows that

$$\mid H^1(G; \mathbf{Z}_p^3)^{(\mathbf{A}_1, \gamma)} \mid = p^{3(\epsilon(\gamma) - \nu(\gamma, 1) - \kappa(\gamma, 1) - \mu(\gamma, 1) + d(\gamma, 1))}.$$

Case 2: $\mathbf{A} = \mathbf{A}_2$. Similarly to case 1, we have

$$\mid H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{2}, \gamma)} \mid = \mid H^{1}(G; \mathbf{Z}_{p}^{2})^{(^{t}\mathbf{D}_{2,1}, \gamma)} \mid \cdot \mid H^{1}(G; \mathbf{Z}_{p})^{(1, \gamma)} \mid .$$

But, ${}^{t}\mathbf{D}_{2,1}$ and $\mathbf{D}_{2,1}$ are conjugate in $GL_{2}(\mathbf{Z}_{p})$, and so

$$| H^1(G; \mathbf{Z}_p^2)^{(^t\mathbf{D}_{2,1},\gamma)} | = | H^1(G; \mathbf{Z}_p^2)^{(\mathbf{D}_{2,1},\gamma)} |$$

By Theorem 3 of [20] and Theorem 3.3 of [21], it follows that

$$\mid H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{2}, \gamma)} \mid = p^{2\epsilon(\gamma) - 3\nu(\gamma, 1) + \nu_{0}(\gamma, 1) - 2\mu(\gamma, 1) + \kappa_{1}(\gamma, 1) - 2\kappa(\gamma, 1)}$$

 $+\mu_1(\gamma,1)+c(\gamma,1)-d_1(\gamma,1)+d_2(\gamma,1)-d_0(\gamma,1)+d(\gamma,1)$

Case 3: $\mathbf{A} = \mathbf{A}_3$.

Then we have

$$\mid H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{3}, \gamma)} \mid = \mid H^{1}(G; \mathbf{Z}_{p})^{(1, \gamma)} \mid \cdot \mid H^{1}(G; \mathbf{Z}_{p}^{2})^{(\mathbf{D}_{2, 1}, \gamma)} \mid$$

By case 2, it follows that

$$|H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{3}, \gamma)}| = |H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{2}, \gamma)}|$$

Case 4: $\mathbf{A} = \mathbf{A}_4$.

Then $\mathbf{D}_{3,1}$ and \mathbf{A}_4 are conjugate in $GL_3(\mathbf{Z}_p)_{\mathbf{e}}$, and so

$$\mid H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{4}, \gamma)} \mid = \mid H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{D}_{3,1}, \gamma)} \mid .$$

$$-10-$$

By Theorem 3 of $\lceil 20 \rceil$, it follows that

$$\mid H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{4}, \gamma)} \mid = p^{\epsilon(\gamma) - 3\nu(\gamma, 1) + 2\nu_{0}(\gamma, 1) - \mu(\gamma, 1) + 2\kappa_{1}(\gamma, 1) - \kappa(\gamma, 1)}$$

$$+2\mu_1(\gamma,1)+c(\gamma,1)-d_1(\gamma,1)+2d_2(\gamma,1)-d_0(\gamma,1)$$

Case 5: $\mathbf{A} = \mathbf{A}_{5,\lambda}$.

Then we have

$$| H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{5,\lambda},\gamma)} | = | H^{1}(G; \mathbf{Z}_{p})^{(1,\gamma)} |^{2} \cdot | H^{1}(G; \mathbf{Z}_{p})^{(\lambda,\gamma)} |.$$

By Theorem 3.3 of [21], it follows that

$$\mid H^{1}(G;\mathbf{Z}_{p}^{3})^{(\mathbf{A}_{5,\lambda},\gamma)} \mid = p^{3\epsilon(\gamma)-2\nu(\gamma,1)-\nu(\gamma,\lambda)-2\kappa(\gamma,1)-\kappa(\gamma,\lambda)-2\mu(\gamma,1)-\mu(\gamma,\lambda)+2d(\gamma,1)+d(\gamma,\lambda)}$$

Case 6: $\mathbf{A} = \mathbf{A}_{6,\lambda}$.

Then we have

$$\mid H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{6,\lambda},\gamma)} \mid = \mid H^{1}(G; \mathbf{Z}_{p}^{2})^{(\mathbf{D}_{2,1},\gamma)} \mid \cdot \mid H^{1}(G; \mathbf{Z}_{p})^{(\lambda,\gamma)} \mid$$

By Theorem 3 of [20] and Theorem 3.3 of [21], it follows that

$$| H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{6,\lambda,\tau},\gamma)} | = p^{2\epsilon(\gamma) - 2\nu(\gamma,1) + \nu_{0}(\gamma,1) - \mu(\gamma,1) + \kappa_{1}(\gamma,1) - \kappa(\gamma,1) + \mu_{1}(\gamma,1)}$$
$$+ c(\gamma,1) - d_{1}(\gamma,1) + d_{2}(\gamma,1) - d_{0}(\gamma,1) - \nu(\gamma,\lambda) - \mu(\gamma,\lambda) - \kappa(\gamma,\lambda) + d(\gamma,\lambda)$$

Case 7: $\mathbf{A} = \mathbf{A}_{7,\lambda}$.

Then we have

$$| H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{7,\lambda},\gamma)} | = | H^{1}(G; \mathbf{Z}_{p})^{(1,\gamma)} | \cdot | H^{1}(G; \mathbf{Z}_{p})^{(\lambda,\gamma)} |^{2}.$$

By Theorem 3.3 of [21], it follows that

$$\mid H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{7,\lambda},\gamma)} \mid = p^{3\epsilon(\gamma) - 2\nu(\gamma,\lambda) - \nu(\gamma,1) - 2\kappa(\gamma,\lambda) - \kappa(\gamma,1) - 2\mu(\gamma,\lambda) - \mu(\gamma,1) + 2d(\gamma,\lambda) + d(\gamma,1)}$$

Case 8: $\mathbf{A} = \mathbf{A}_{8,\lambda}$.

Then we have

$$| H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{8,\lambda},\gamma)} | = | H^{1}(G; \mathbf{Z}_{p}^{2})^{(\mathbf{D}_{2,\lambda},\gamma)} | \cdot | H^{1}(G; \mathbf{Z}_{p})^{(1,\gamma)} |$$

By Theorem 3 of [20] and Theorem 3.3 of [21], it follows that

$$|H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{8,\lambda},\gamma)}| = p^{2\epsilon(\gamma) - 2\nu(\gamma,\lambda) + \nu_{0}(\gamma,\lambda) - \mu(\gamma,\lambda) + \kappa_{1}(\gamma,\lambda) - \kappa(\gamma,\lambda) + \mu_{1}(\gamma,\lambda)} + c(\gamma,\lambda) - d_{1}(\gamma,\lambda) + d_{2}(\gamma,\lambda) - d_{0}(\gamma,\lambda) - \nu(\gamma,1) - \mu(\gamma,1) - \kappa(\gamma,1) + d(\gamma,1)}$$

Case 9: $\mathbf{A} = \mathbf{A}_{9,\lambda,\tau}$.

Then we have

$$| H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{9,\lambda,\tau},\gamma)} | = | H^{1}(G; \mathbf{Z}_{p})^{(1,\gamma)} | \cdot | H^{1}(G; \mathbf{Z}_{p})^{(\lambda,\gamma)} | \cdot | H^{1}(G; \mathbf{Z}_{p})^{(\tau,\gamma)} | .$$

By Theorem 3.3 of [21], it follows that

$$|H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{9,\lambda,\tau},\gamma)}| = p^{3\epsilon(\gamma) - \nu(\gamma,1) - \nu(\gamma,\lambda) - \nu(\gamma,\tau) - \kappa(\gamma,1) - \kappa(\gamma,\lambda) - \kappa(\gamma,\tau)} - \mu(\gamma,1) - \mu(\gamma,\lambda) - \mu(\gamma,\tau) + d(\gamma,1) + d(\gamma,\lambda) + d(\gamma,\tau)}$$

Case 10: $A = A_{10,i}$.

Then we have

$$|H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{10,i},\gamma)}| = |H^{1}(G; \mathbf{Z}_{p})^{(1,\gamma)}| \cdot |H^{1}(G; \mathbf{Z}_{p}^{2})^{(\mathbf{B}_{2}^{i},\gamma)}|$$

By Theorem 4 of [20] and Theorem 3.3 of [21], it follows that

$$| H^{1}(G; \mathbf{Z}_{p}^{3})^{(\mathbf{A}_{10,i},\gamma)} |= p^{3\epsilon(\gamma)-2\nu(\gamma, \mathbf{B}_{2}^{i})-2\kappa(\gamma, \mathbf{B}_{2}^{i})-2\mu(\gamma, \mathbf{B}_{2}^{i})+2d(\gamma, \mathbf{B}_{2}^{i})} -\nu(\gamma, 1)-\mu(\gamma, 1)-\kappa(\gamma, 1)+d(\gamma, 1)}$$

By cases 1,2, ..., 9 and 10, the result follows. Q.E.D.

Corollary 1 Let D be a connected symmetric digraph, G its underlying graph, p(>3) prime and $g \in \mathbb{Z}_p^3$. Then the number of I-isomorphism classes of g-cyclic \mathbb{Z}_p^3 -covers of D is

$$\begin{split} Iso(D, \mathbf{Z}_p^3, g, I) &= \frac{1}{p^3(p-1)^2(p+1)} \{ p^{3B} + (p+1)(p^3 - p^2 - 1)p^{2B} \\ &+ p(p^5 - p^4 - 2p^3 + p^2 + p + 1)p^B \}, \end{split}$$

where B = B(G) = |E(G)| - |V(G)| + 1 is the Betti-number of G.

Proof. Since $I = \{1\}$, we have $\epsilon(1) = |E(G)|$, $\mu(1, z) = \mu_1(1, \lambda) = \kappa_1(1, \lambda) = d_1(1, \lambda) = d_0(1, \lambda) = d_2(1, \lambda) = 0$, where $z = \lambda, \mathbf{B}_2^i$. Moreover, we have

$$\nu(1,z) = \begin{cases} \mid V(G) \mid & \text{if } z = \lambda = 1, \\ 0 & \text{otherwise,} \end{cases} \quad \kappa(1,z) = \begin{cases} 0 & \text{if } z = \lambda = 1, \\ \mid E(G) \mid & \text{otherwise,} \end{cases}$$
$$\nu_0(1,\lambda) = \begin{cases} \mid V(G) \mid & \text{if } \lambda = 1, \\ 0 & \text{otherwise} \end{cases} \quad and \quad c(1,\lambda) = \begin{cases} 1 & \text{if } \lambda = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Furthermore, we have

$$d(1,z) = \left\{ egin{array}{cc} 1 & ext{if } z = \lambda = 1 \ , \\ 0 & ext{otherwise.} \end{array}
ight.$$

Q.E.D.

This is the formula for r = 3 in [16, Theorem 4.4].

3. The conjugacy classes of $GL_3(\mathbf{Z}_p)_{\mathbf{e}}$

Let p an odd prime number. Then we consider all conjugacy classes of $GL_3(\mathbf{Z}_p)_{\mathbf{e}}$, where $\mathbf{e} = (100)^t$.

Theorem 4 Let p be an odd prime. Then the representatives of the conjugacy classes of $GL_3(\mathbf{Z}_p)_{\mathbf{e}}$ are given as follows:

$$\begin{split} \mathbf{A}_{1} &= \mathbf{I}_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{A}_{2} = \begin{bmatrix} {}^{t}\mathbf{D}_{2,1} \\ 1 \end{bmatrix}, \mathbf{A}_{3} = \begin{bmatrix} 1 \\ \mathbf{D}_{2,1} \end{bmatrix}, \mathbf{A}_{4} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \\ \mathbf{A}_{5,\lambda} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \end{bmatrix} (2 \le \lambda \le p - 1), \mathbf{A}_{6,\lambda} = \begin{bmatrix} {}^{t}\mathbf{D}_{2,1} \\ \lambda \end{bmatrix} (2 \le \lambda \le p - 1), \\ \mathbf{A}_{7,\lambda} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} (2 \le \lambda \le p - 1), \mathbf{A}_{8,\lambda} = \begin{bmatrix} 1 \\ \mathbf{D}_{2,\lambda} \end{bmatrix} (2 \le \lambda \le p - 1), \\ \mathbf{A}_{9,\lambda,\tau} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \tau \end{bmatrix} (2 \le \lambda \ne \tau \le p - 1), \mathbf{A}_{10,i} = \begin{bmatrix} 1 \\ \mathbf{B}_{2}^{i} \end{bmatrix} (0 < i < p^{2} - 1, i \ne 0 \pmod{p + 1}). \end{split}$$

Proof. Let $\Pi = GL_3(\mathbf{Z}_p)$. Then we have

$$\Pi_{\mathbf{e}} = \{ \begin{bmatrix} 1 & a & b \\ 0 & \mathbf{B} \end{bmatrix} \mid a, b = 0, 1, \cdots, p-1; \mathbf{B} \in GL_2(\mathbf{Z}_p) \}.$$

Now, let

1

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ \mathbf{0} & \mathbf{B} \end{bmatrix}, \mathbf{F} = \begin{bmatrix} 1 & c & d \\ \mathbf{0} & \mathbf{D} \end{bmatrix}, \mathbf{B} = \begin{bmatrix} s & t \\ u & v \end{bmatrix}, \mathbf{D} = \begin{bmatrix} k & l \\ m & n \end{bmatrix},$$

where $c, d = 0, 1, \cdots, p-1; \mathbf{B}, \mathbf{D} \in GL_2(\mathbf{Z}_p)$. Then we have

$$\mathbf{F}^{-1}\mathbf{A}\mathbf{F} = \begin{bmatrix} 1 & \alpha & \beta \\ \mathbf{0} & \mathbf{D}^{-1}\mathbf{B}\mathbf{D} \end{bmatrix},$$

where

$$\begin{split} \alpha &= c + 1/\mid \mathbf{D} \mid \{-(cn - dm)(sk + tm) + (cl - dk)(uk + vm)\},\\ \beta &= d + 1/\mid \mathbf{D} \mid \{-(cn - dm)(sl + tn) + (cl - dk)(ul + vn)\}. \end{split}$$

Next, we consider the condition for **B** and **D** to satisfy the equation $D^{-1}BD = B$. Suppose that BD = DB. Then we have

If $\mathbf{BD} = \mathbf{DB}$, then

$$\begin{cases} sk + tm = sk + ul \\ sl + tn = tk + vl \\ uk + vm = sm + un \\ ul + vn = tm + vn \end{cases} i.e., \begin{cases} ul = tm \\ t(n-k) = l(v-s) \\ u(n-k) = m(v-s) \end{cases}$$

Thus, the (1, 2)-array of $\mathbf{F}^{-1}\mathbf{AF}$ is

$$c + 1 / |\mathbf{D}| (lm - nk)(cs + du) = (1 - s)c - ud.$$

Furthermore, the (1,3)-array of $\mathbf{F}^{-1}\mathbf{AF}$ is

$$d + 1 / | \mathbf{D} | (lm - nk)(ct + dv) = -tc + (1 - v)d.$$

For any $a, b \in \mathbf{Z}_p$, set

$$\begin{cases} (1-s)c - ud = a \\ -tc + (1-v)d = b \end{cases} \cdots (*).$$

Then, there exist $c, d \in \mathbf{Z}_p$ satisfying (*) if and only if

$$\det(\mathbf{I} - \mathbf{B}) = \det(\mathbf{I} - \mathbf{B}^t) = \det \begin{bmatrix} 1 - s & -u \\ -t & 1 - v \end{bmatrix} \neq 0,$$

i.e., I - B is regular. Note that I - B is not regular if and only if 1 is one of the eigenvalues of B. But, the representatives of conjugacy classes of $GL_2(\mathbb{Z}_p)$ are given as follows:

$$\begin{split} \mathbf{C}_{\lambda} &= \left[\begin{array}{c} \lambda \\ \lambda \end{array} \right] (1 \leq \lambda \leq p-1), \mathbf{D}_{2,\lambda} = \left[\begin{array}{c} \lambda & 0 \\ 1 & \lambda \end{array} \right] (1 \leq \lambda \leq p-1), \\ \mathbf{B}_{\lambda,\tau} &= \left[\begin{array}{c} \lambda \\ \tau \end{array} \right] (1 \leq \lambda \neq \tau \leq p-1), \mathbf{B}_{2}^{i} (0 < i < p^{2}-1, i \neq 0 \pmod{p+1}), \end{split}$$

where we select only one of i and i' such that $ip \equiv i' \pmod{p^2 - 1}$ for \mathbf{B}_2^i (see [11]). The cardinalities and the number of the first, second,..., fourth type of conjugacy classes are as follows:

$$1, (p-1)(p+1), p(p+1), p(p-1); p-1, p-1, \frac{1}{2}(p-1)(p-2), \frac{1}{2}p(p-1).$$

Then each of matrices C_{λ} , $D_{2,\lambda}(2 \leq \lambda \leq p-1)$ and $B_{\lambda,\tau}(2 \leq \lambda \neq \tau \leq p-1)$ does not contain 1 as its eigenvalue. By Lemma 5 of [20], each $B_2^i(0 < i < p^2 - 1, i \neq 0 \pmod{p+1})$ does not contain 1 as its eigenvalue. Thus,

$$\mathbf{F}^{-1}\mathbf{AF} = \left[egin{array}{ccc} 1 & a & b \ \mathbf{0} & \mathbf{B} \end{array}
ight] for any \ a,b \in \mathbf{Z}_p,$$

where $\mathbf{B} = \mathbf{C}_{\lambda}, \mathbf{D}_{2,\lambda}, \mathbf{B}_{\lambda,\tau}, \mathbf{B}_{2}^{i}$. Therefore the following four matrices are given as the representatives of conjugacy classes of $GL_2(\mathbf{Z}_p)_{\mathbf{e}}$:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} (2 \le \lambda \le p-1), \begin{bmatrix} 1 \\ \mathbf{D}_{2,\lambda} \end{bmatrix} (2 \le \lambda \le p-1),$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \tau \end{bmatrix} (2 \le \lambda \ne \tau \le p-1), \begin{bmatrix} 1 \\ B_2^i \end{bmatrix} (0 < i < p^2 - 1, i \ne 0 \pmod{p+1}).$$

The cardinalities and the number of the above four types of conjugacy classes are as follows:

$$p^{2}, p^{2}(p-1)(p+1), p^{3}(p+1), p^{3}(p-1); p-2, p-2, \frac{1}{2}(p-2)(p-3), \frac{1}{2}p(p-1).$$

The representatives of conjugacy classes of $GL_2(\mathbf{Z}_p)$ which contain 1 as eigenvalues are given as follows:

$$\mathbf{C}_1 = \mathbf{I}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{D}_{2,1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \mathbf{B}_{1,\lambda} = \begin{bmatrix} 1 \\ \lambda \end{bmatrix} (2 \le \lambda \le p - 1).$$

Case 1: $\mathbf{B} = \mathbf{C}_1$.

$$\mathbf{F}^{-1}\mathbf{I}_3\mathbf{F} = \mathbf{I}_3 \text{ for any } \mathbf{F} \in GL_2(\mathbf{Z}_p)_{\mathbf{e}}$$

Next, let

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{F} = \begin{bmatrix} 1 & c & d \\ \mathbf{0} & \mathbf{D} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} a & b \\ m & n \end{bmatrix} (an - bm \neq 0).$$

Then we have

$$\mathbf{F}^{-1}\mathbf{AF} = \begin{bmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

for any $a, b \in \mathbf{Z}_p$.

Therefore the following two matrices are given as the representatives of conjugacy classes of $GL_2(\mathbf{Z}_p)_{\mathbf{e}}$:

	1	1	0]
$I_3,$	0	1	0	.
	0	0	1	

The cardinalities and the number of the above two types of conjugacy classes are as follows:

$$1, p^2 - 1; 1, 1.$$

Case 2: $\mathbf{B} = \mathbf{D}_{2,1}$.

Then, let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \mathbf{F} = \begin{bmatrix} 1 & c & -a \\ \mathbf{0} & \mathbf{D} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} k & 0 \\ m & k \end{bmatrix} (k \neq 0).$$

Then we have

$$\mathbf{F}^{-1}\mathbf{AF} = \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

--15--

for any $a \in \mathbf{Z}_p$.

Next, let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \mathbf{F} = \begin{bmatrix} 1 & c & -a+m \\ \mathbf{0} & \mathbf{D} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} b & 0 \\ m & b \end{bmatrix} (b \neq 0).$$

Then we have

$$\mathbf{F}^{-1}\mathbf{A}\mathbf{F} = \begin{bmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

for any $a \in \mathbf{Z}_p$ and $b \in \mathbf{Z}_p^*$.

Therefore the following two matrices are given as the representatives of conjugacy classes of $GL_2(\mathbf{Z}_p)_{\mathbf{e}}$:

Γ	1	0	0		1	0	1	
	0	1	0	,	0	1	0	
L	0	1	1		0	1	1	

The cardinalities and the number of the above two types of conjugacy classes are as follows:

$$p(p-1)(p+1), p(p-1)^2(p+1); 1, 1$$

Case 3: $\mathbf{B} = \mathbf{B}_{1,\lambda}$.

Then, let

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \end{bmatrix}, \mathbf{F} = \begin{bmatrix} 1 & c & (1-\lambda)^{-1}b \\ \mathbf{0} & \mathbf{D} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} k & 0 \\ 0 & n \end{bmatrix} (kn \neq 0).$$

Then we have

$$\mathbf{F}^{-1}\mathbf{A}\mathbf{F} = \begin{bmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

for any $b \in \mathbf{Z}_p$.

Next, let

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \end{bmatrix}, \mathbf{F} = \begin{bmatrix} 1 & c & b(1-\lambda)^{-1} \\ \mathbf{0} & \mathbf{D} \end{bmatrix}, \mathbf{D} = \begin{bmatrix} a & 0 \\ 0 & n \end{bmatrix} (an \neq 0).$$

Then we have

$$\mathbf{F}^{-1}\mathbf{A}\mathbf{F} = \begin{bmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

-16-

for any $a \in \mathbf{Z}_p^*$ and $b \in \mathbf{Z}_p$.

Therefore the following two matrices are given as the representatives of conjugacy classes of $GL_2(\mathbf{Z}_p)_{\mathbf{e}}$:

$$\left[egin{array}{cccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & \lambda \end{array}
ight] (2 \leq \lambda \leq p-1), \left[egin{array}{ccccc} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & \lambda \end{array}
ight] (2 \leq \lambda \leq p-1).$$

The cardinalities and the number of the above two types of conjugacy classes are as follows:

$$p^2(p+1), p^2(p-1)(p+1); p-2, p-2.$$

Q.E.D.

References

- Y. Cheng and A. L. Wells, Jr., Switching classes of directed graphs, J. Combin. Theory Ser. B 40 (1986), 169-186.
- [2] K. Dresbach, Uber die strenge Isomorphie von Graphenüberlagerungen, Diplomarbeit, Univ. of Cologne (1989).
- [3] J. L. Gross and T. W. Tucker, Generating all graph coverings by permutation voltage assignments, Discrete Math. 18 (1977), 273-283.
- [4] J. L. Gross and T. W. Tucker, *Topological Graph Theory*, Wiley-Interscience, New York, (1987).
- [5] M. Hofmeister, Counting double covers of graphs, J. Graph Theory 12 (1988), 437-444.
- [6] M. Hofmeister, Isomorphisms and automorphisms of graph coverings, Discrete Math. 98 (1991), 175-185.
- [7] M. Hofmeister, Graph covering projections arising from finite vector spaces over finite fields, Discrete Math. 143 (1995), 87-97.
- [8] M. Hofmeister, Combinatorial aspects of an exact sequence that is related to a graph, Publ. I.R.M.A. Strasbourg, 1993, S-29, Actes 29^e Séminaire Lotharingien.
- [9] S. Hong, J. H. Kwak and J. Lee, Regular graph coverings whose covering transformation groups have the isomorphism extension property, Discrete Math. 148 (1996), 85-105.
- [10] A. Kerber, Algebraic Combinatorics via Finite Group Actions, BI-Wiss. Verl., Mannheim, Wien, Zü rich, (1991).
- [11] T. Kondo, Group Theory(in Japanese), Iwanami, Tokyo, (1991).

-17-

- [12] J. H. Kwak and J. Lee, Isomorphism classes of graph bundles, Canad. J. Math. XLII (1990), 747-761.
- [13] J. H. Kwak, J. Chun and J. Lee, Enumeration of regular graph coverings having finite abelian covering transformation groups, SIAM. J. Disc. Math. 11 (1998), 273-285.
- [14] J. H. Kwak and J. Lee, Enumeration of connected graph coverings, J. Graph Theory 23 (1996), 105-109.
- [15] H. Mizuno, J. Lee and I. Sato, Isomorphisms of connected cyclic abelian covers of symmetric digraphs, submitted.
- [16] H. Mizuno and I. Sato, Isomorphisms of some covers of symmetric digraphs (in Japanese), Trans. Japan SIAM. 5-1 (1995), 27-36.
- [17] H. Mizuno and I. Sato, Isomorphisms of some cyclic abelian covers of symmetric digraphs, Yokohama Math. J. 47 (1999), 165-182.
- [18] H. Mizuno and I. Sato, Isomorphisms of cyclic abelian covers of symmetric digraphs, Ars Combinatoria 54 (2000), 3-12.
- [19] H. Mizuno and I. Sato, Isomorphisms of some regular prime-square-fold coverings, to appear in Bulletin of Meisei University.
- [20] H. Mizuno and I. Sato, Isomorphisms of some regular prime-cubic-fold coverings, preprint.
- [21] I. Sato, Isomorphisms of some graph coverings, Discrete Math. 128 (1994), 317-326.
- [22] D. A. Waller, Double covers of graphs, Bull. Austral. Math. Soc. 14 (1976), 233-248.
- [23] (論文: 対称有向グラフのある cyclic abelian covers の同型について II 著者: みずの ひろぶみ, 明星大学情報学部 さとう いわお,小山高専 受付: 平成 12 年 12 月 22 日)