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Abstract

 Let D be a connected symmetric digraph, ZP a cyclic group of prime order p(> 3) and F a group 
of automorphisms of D. We enumerate the number of IF-isomorphism classes Of g_CyCiC Z3_CoverS of P 

D for any nonunit g G Z3, where Z3 is the direct sum of three Z                       P P P*

1. Introduction

 Graphs and digraphs treated here are finite and simple. 

 Let D be a symmetric digraph and A a finite group. A function a : A(D) A is called 
alternating if a(y, x) = a(x, y) -' for each (x, y) E A(D). For g C A, a g-cyclic A-cover ( or 

g-cyclic cover ) Dg (a) of D is the digraph as follows: 

     V (Dg (a)) = V (D) x A, and ((u, h), (v, k)) G A (Dg (ce)) if and only if (u, v) G 
    A(D) and k-'ha(u, v) = g. 

The natural projection 7r : Dg (a) D is a function from V(Dg(01)) onto V(D) which erases the 
second coordinates. A digraph D' is called a cyclic A-cover of D if D' is a g-cyclic A-cover of D 
for some g E A. In the case that A is abelian, then Dg(oz) is simply called a cyclic abelian cover. 

 Let a and ~3 be two alternating functions from A(D) into A, and let IF be a subgroup of the 
automorphism group Aut D of D, denoted F < Aut D. Let g, h (E A. Then two cyclic A-covers 
Dg(a) and Dh(~3) are called F-isomorphic, denoted Dg(ce)~_-~rDh(3), if there exist an isomorphism 
4) : Dg (a) Dh(0) and a -~ c r such that 7rl) = -y7, i.e., the diagram
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                       Dg(a) "'-.Dh(~3) 

                               IT 
ly 7r 

                  D D 

commutes. Let I = III be the trivial subgroup of automorphisms. 
 Cheng and Wells [1] discussed isomorphism classes of cyclic triple covers 0-CYCliC Z3-covers) of 

a complete symmetric digraph. Mizuno and Sato [16,18] enumerated the number of 1-isomorphism 
classes of g-cyclic Z'-covers and g-cyclic Zpn -covers, and F-isomorphism classes of g-cyclic Z -covers                 P P 
of a connected symmetric digraph D for any prime p(> 2). Furthermore, Mizuno, Lee and Sato 

[15] gave a formula for the the number of 1-isomorphism classes of connected g-cyclic Z'-covers and 
P connected g-cyclic Zpn -covers of D for any prime p(> 2). Mizuno and Sato 16] gave a formula for 

the enumeration of r-isomorphism classes of g-cyclic ZP x Zp-covers of D for any prime p(> 2)_ 
 Let G be a graph and A a finite group. Let D(G) be the arc set of the symmetric digraph 

corresponding to G. Then a mapping a : D(G) A is called an ordinary voltage assignment if 
a (v, u) = a(u, v) _' for each (u, v) E D (G). The ordinary ) derived graph G' derived from an 
ordinary voltage assignment a is defined as follows: 

     V (G') = V (G) x A, and ((u, h), (v, k)) G D(G') if and only if (u,v) E D(G) 
    and k = ha(u, v). 

The graph G' is called an A-covering of G. The A-covering G' is an I A 1-fold regular covering 
of G. Every regular covering of G is an A-covering of G for some group A (see [3]). Furthermore 
the 1-cyclic A-cover Di(a) of a symmetric digraph D can be considered as the A-covering D' of 
the underlying graph -6 of D. 

 A general theory of graph coverings is developed in [4]. Z2-coverings (double coverings) of graphs 
were dealed in [ 5 ] and [22]. Hofmeister [6] and, independently, Kwak and Lee [ 12] enumerated the I-
isomorphism classes of n-fold coverings of a graph, for any n E N. Dresbach [2] obtained a formula 
for the number of strong isomorphism classes of regular coverings of graphs with voltages in finite 
fields. The I-isomorphism classes of regular coverings of graphs with voltages in finite dimensional 
vector spaces over finite fields were enumerated by Hoftneister [7]. Hong, Kwak and Lee [9] gave the 
number of 1-isomorphism classes Of Zn-coverings, ZPED zp-coverings and Dn-coverings, modd, of 

graphs, respectively. Mizuno and Sato [19,20,21] presented the numbers of F-isomorphism classes of 
z n -coverings of graphs for n = 1, 2, 3 and any prime p(> 2). 

P 

 In the case of connected coverings, Kwak and Lee [14] enumerated the I-isomorphism classes 

of connected n-fold coverings of a graph G. Furthermore, Kwak, Chun and Lee [13] gave some 

formulas for the number of I-isomorphism classes of connected A-coverings of G when A is a finite 

abelian group or Dn-

 We present the number of I-isomorphism classes of g-cyclic Z3 -covers of connected symmetric P 

digraphs for any element g :~: 0 E Z3, where 0 is the unit of Z3 and any prime p(> 3). 
                                P P
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                    2. Isornorphisms of cyclic Z3 -covers P 

 Let D be a connected symmetric digraph and A a finite abelian group. The group IF of autornor-

phisms of D acts on the set C(D) of alternating functions from A(D) into A as follows: 

              a' (x, y) = a (-y (x), 7 (y)) f or all (x, y) c A (D), 

where a G C(D) and -y c r. 
 Let G be the underlying graph of D. The set of ordinary voltage assignments of G with voltages 

in A is denoted by C' (G; A). Note that C(D) = C'(G; A). Furthremore, let CO (G; A) be 
the set of functions from V (G) into A. We consider CO (G; A) and C 1 (G; A) as additive groups. 
The homomorphism 6 : CO (G; A) ) C' (G; A) is defined by (6s) (X, y) = s (x) - s (y) for s EE 
C'(G; A) and (x,,y) G A(D). The 1-cohomology group H'(G; A) with coefficients in A is defined 
by H1 (G; A) = C' (G; A) /Im 6. For each a E C' (G; A), let [a] be the element of H1 (G; A) which 
contains a. 

 The automorphism group Aut A acts on C'(G; A) and C'(G- A) as follows: 

                  (us)(x) = u(s(x)) for x G V(D)I 

                (ora) (x, y) = a (a (x, y)) f or (x, y) E A (D) I 

where s E CO (G; A), a G C' (G; A) and a G Aut A. A finite group B is said to have the 
isomorphism extension property(IEP), if every isomorphism between any two isomorphic subgroups 
S1 and S2 of B can be extended to an automorphism of B (see [9]). For example, the cyclic group Z, 
for n G N, the dihedral group D,, for odd n > 3, and the direct sum of m copies of Zp(p: prime) 
have the IEP. 

 Mizuno and Sato [18] gave a characterization for two cyclic A-covers of D to be IF-isomorphic. 

Theorem 1 (18, Corollary 3) Let D be a connected symmetric digraph, G the underlying 

graph of D, A a finite abelian group with the IEP, g E A, a,,3 G QD) and r < Aut D. 
Assume that the order of g is odd. Then the following are equivalent: 

 1. Dg (a) Dg (3) 
 2. There exist -y E r, o, E Aut A and s G C'(G; A) such that 

                              aa-I + 6s and a(g) = g. 

 Let Iso(D, A, g, r) denote the number of F-isomorphism classes of g-cyclic A-covers of D. The 
following result holds. 

Theorem 2 (18, Theorem 3) Let D be a connected symmetric digraph, G the underlying 

graph of D, A a finite abelian group with the IEP, g, h G A and IF < Aut D. Assume that the 
orders of g and h are equal and odd, and p(g) = h for some p E Aut A. Then 

                     Iso(D, A, g, F) = Iso(D, A, h, r). 
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 Let p(> 3) be prime and Z the cyclic group. of order p. Then Z3 =Z X Z X Z has the IEP. Since 
                         P P P P P 

Z3 is the 3-dimensional vector space over ZP, the general linear group GL3(Zp) is the automorphism 

P group of Z3. ' Furthermore, GL3 (Zp) acts transitively on Z3\101. Sete =e (100)t E Z3           P P P, 

By Theorem 2, we have Iso(D, A, g, IF) = Iso(D, A, e, IF) for any element g G Z3 f 01. Thus we 
P consider the number of r-isomorphism classes of e-cyclic Z3 -covers of D. P 

 Let IF < Aut D and 11 GL3(Zp). Furthermore, set 

                      He = 19 E 111 a(e) = el. 

An action of He X F on H'(G; Z3) is defined as follows: 

P 

              (A, -y) [a] = [Aal] = JAa'y + 6s I s C CO (G; Z3)1, 

P where A E II, -y E r and a E C'(G; Z3) . By Theorem 1, the number of r-isomorphism classes of 

P 

       3 _Ie x IF-orbits on H'(G; Z3). e-cyclic 2, P-covers of D is equal to that of I P 
 Let A C Z* and i an integer. Then we introduced two types of matrices as follows: P

Dn ,.\ =

A 0 

1 A 

0 1 

0 0 

0 0

where 0 < i < P 2 - 1 1 i # 0 (mod p + 1). 
 Let K = GF(p2 ) be the finite field with 

plicative group K*. Then, identifying GL2(Z 

                       B2(T) =1 PT 

Note that ord(B2) =p2 - 1, -where ord( I A) is 
 Let D be a connected symmetric digraph, 

A E Z* and 0 < i < P2 - 1 such that i EA 0 

P 

 A < -y >-orbit a of length k on E(G) is 
X E V(G). The vertex orbit < > x and the 

 Let z = A7 B' and m = ord(z). Then a di 
2 orbit of length k and the corresponding vert 

zk and type-2 otherwise. 

 Let k G N. A < -~ >-orbit a on V(G) E(

0 0 

0 0 

A 0 

   I A 

0 1

0 

0 

0 

0 

A

7 B21 

1

                           2 elements
, and p be a generator of the cyclic multi-

                       p) with GL(K), the matrix B2 is defined as follows: 

                             -F G K (C.f 

                          the order of A. 
                        G the underlying graph of D, F < Aut D, F, 

                    mod p + I). 
                          called diagonal if o, =< -y > 1XI ly k (X) I for some 

                         arc orbit < y > (X1 ly k (x)) are also called diagonal. 
                         agonal arc orbit of length 2k (the corresponding edge 

                         ex orbit of length 2k) is called type-l if z k = -1 or

                            I G) or D(G) is called k-divisible if I a 1=-= 0 (mod k). 
A < -y >-orbit a on V(G) is called edge-induced if there exists a. orbit < -/ > f x, yj on E(G) with 
X, y E a. A k-divisible < 7 >-orbit a on V(G) is called strongly k-divisible if a is edge-induced 
and satisfies the following condition: 

      If Q =< 7 > (Xly) is any < 7 >-Orbit on D(G), and y 7j(x), X,y E a,then 

   j =_ 0 (mod k). 
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Note that, if a =< -y > x is strongly m-divisible, I a J= t and there exists a diagonal < 7 >-orbit 
 = < -y > (x, -y'l' (x)) on D (G), then Q is type-2. 

 For 7 G IF, let G(7) be a simple graph whose vertices are the < -y >-orbits on V(G), with two 
vertices adjacent in G(-y) if and only if some two of their representatives are adjacent in G. The k 
th p-level of G(7) is the induced subgraph of G(-~) on the vertices w such that 0(1 w 1) = Pk, where 
0(i) is the largest power of p dividing i. A p-level component of G(-y) is a connected component of 
some p-level of G(-y). 

 Let z = A) B' and m = ord(z). Then, let G, (-y) be the subgraph induced by the set of m-
2 divisible < 7 >-orbits on V(G). Note that G, (-y) = G(-y) for z = A = 1. The k th p-level and 

p-level components of G,(-y) are defined similarly to the case of G(-y). A p-level component K of 
G,(,y) is is called minimal if each a of K satisfies the condition 0(1 a 1) < 0(1 W 1) whenever W 0 K 
and cTw G E(G(7)) (c.f., [1]). 

 Let H be a p-level component of G,(-y) (a 0 th p-level component of GX(-y)). Then H is called 
z-favorable(O-favorable) if H satisfies one of the following conditions: 

  1. H is not minimal, 
 2. some o, of H is not strongly m-divisible, or 

 3. some a of H is type-I diagonal. 

Otherwise H is called z-defective(O-defective). If z = A, then z-defective(z-favorable) p-level compo-
nents of G,(-y) are defective(favorable) p-level components of G,\(-/)(see [21]). 

 Let A C Z* and m = ord(A). For k > 1, let H be a k th p-level component of G         P A (7). Then H 
is called A-sernidefective if H is not A-favorable, and some or of H is strongly m-divisible but not 
strongly p-divisible. Furthermore, H is called A-strongly defective if H is minimal, and each vertex 
of H is strongly pm-divisible but not type-I diagonal.

Theorem 3 Let D be a connected symmetric digraph, G its underlying graph, p(> 3) prime, 

g C Z' f 01 and r < Aut D. Let z = A, B', where A (E Z*, 0 < i <p2_1,i#0 (mod p + 1)      P 2 P -

and m ord(z). For 7 C r and z, let c(-y), n(-y, z), z), v(-y, z) and d(7, z) be the number 
of < -y >-orbits on E(G), not m-divisible, not diagonal < -~ >-orbits on E(G), type-2 diagonal 
< -y >-orbits on E(G), m-divisible < -y >-orbits on V(G), and z-defective p-level component 
of G,(-y), respectively. For -y c r and A E Zp*~ let vo(^~, A), gi (-y, A) and r,1(7, A) be the number 
Of m-divisible, not p-divisible < -y >-orbits on V(G), p-divisible type-1 diagonal < -y >-orbits 
on E(G), and pm-divisible, not diagonal < -y >-orbits on E(G), respectively. Furth I ermore, 
'let 4-y, A), di (-y, A), d2 (7, A) and do (-y, A) be the number of p-level components, A-favorable p-
level components, A-strongly defective p-level components and 0-favorable p-level components 
of G.X(-y), respectively. Then the number of IF-isomorphism classes of g-cyclic V-covers qJD 

P
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is 

Iso(D, V, g, IF) 1mr, E,rIP,          P P,(P-'),(P+ 

         + (p + 1)1(p 

                                                      +tzl(-~,1)+c(-y,l)-dl(-y,l)+d2(-Y,1)-do(-y,l)+d(-y,l) 

      + P(P 1)2(p + I)pE(-y)-3v(-y,l)+2vo(-y,l)-A(-y,l)+2rj.(-y,l)-r,(-y,l) 

                                             +2ttl(-y.,I)+c(-y,l)-dl(,y,l)+2d2(-y,l)-do(-y,l) 

       + P 2(p + 1) EP-1 p3c(-y)-2v(-y,l)-v(-y,A)-2n(-y,l)-n(-y,A)-2tL(-y,l)-/,t(-y,A)+2d(-y,l)+d(-y,A)                      A=2 

          2(p _ 1)(p + 1) EP-1 p2E(,~y)-2v(,y,l)+vo(-y,l)-p(-y,l)+rl(-y,l)-r,(-Y,1)+ttl(-Y,I)+c(-Y,l)      + P A=2 

           2 TP-I p3E(-y)-2v(-y,A)-v(7,1)-2r.(-y,A)-r,(-y,l)-2,v(-y,A)-tL(-Y,I)+2d(-y,A)+d(-y,l).       + P ~A=2 

      + 2(p _ 1)(p + 1) EP-1 p2E(7)-2v(,y,,\)+vo(-y,X)-A(-Y,A)+ro(-Y,A)-n(-Y,A)+Al(-Y,-\)+c(-Y,A) 

P 

                                    -di (,y,A)+d2(-y,A)-do(-y,A)-v(-y,l)-ft(-y,l)-r,(-y,l)+d(-y,l) 

    • P 3(p + 

                                                     -tt(-y,-r)-It(-y,l)+d(-y,A)+d(-y,-r)+d(-y,l) 

       • 3 (p -y) -2v(-y,B' ) -2r,(-y,B~ ) -2A(-Y,B'         P EO<j<p2-1,i$O(mod P+J) p3E( 2 2 2 

                                                     +2d(-y,B') - v(-y, 1) -K(-y, 1) -/,t(-y,l)+d(-y, 1) 

2 where we select only one of i and i' such that ip =- V(mod p2 _ 1) in the last summation. 

 Proof Let H = GL3(Zp). By the preceding remark and Burnside's Lemma, the number of 
IF-isornorphism classes of e-cyclic V-covers of D is 

P 

                         1: 1 H1 (G; Z3)(A,-y)                       Ile IF I (A,-y) E rL, x r P 

where U (A,,y) is the set consisting of the elements of U fixed by (A, -y). 
  Now, we have 

              lie 1 a b a, b = 01 1, - - -,p - 1; B G GL2(ZP)I-
                 0 B 
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 Now, there exist p2 + p - I conjugacy classes of H,,,. By Theorem 4, the representatives of these 

conjugacy classes are given as follows: 

           1 0 0 

A 'D~j A4 1 0 1  A, 13 0 1 0 2 A3 D
2,1 0 1 0 

          L 0 0 1 0 1 1 

              1 0 0 tD
2,1       A (2, < A < p. - 1), A6,A        5,A 0 1 0 A (2 < A < p -

            0 0 A 

            1 0 0 

      A 7,A 0 A 0 (2 < A < p - 1), A8,A 
D2,A (2 < A < p -

            0 0 A 

Ag A10'i (0 < i < P2_1,i 0 0 (M p          0 A 0 (2 < A =,4 -r < p-l B
2 od . +1)). 

        0 0 T -

where we select only one of i and V such that ip =- V(mod p2 _ 1) for B' (see[ I I]). The cardinalities 
2 of the first, second,- - -, tenth type of conjugacy classes are as follows: 

        lip 2 - 11 p(p _ 1) (p + 1), P(p _ 1)2 (p + 1), P2 (p + 1), P2 (p (p + 1) 

                 p 2 1 p 2 (p (p + 1), P3 (p + 1), P3 (p 

Furthermore, the number of the first, second,- - -, tenth type of conjugacy classes are as follows: 

I 
             11 11 11 lip - 2,p - 2,p - 2,p - 2, -(p - 2)(p - 3), lp(p - 1)-

                               2 2 

The detail is developed in Section 3. 
 Let A, F C HE~ be conjugate. Then there exists an element C E He such that CAC-1 = F. Thus 

[a] E H1 (G; Z3) (A,-~) if and only if Aa'y = a + 6s for some 8 E C'(G; Z3). But Aa-~ = a + 6s              P P 

if and only if F (Ca)7 = Ca + 6 (Cs), i.e., [Ca] G H1 (G; Z3) (F,-y). By the fact that a mapping 

P [a] [Ca] is bijective, we have 

                    H' (G; Z3) (A,-y) 1=1 H'(G; Z3)(F,-,)                                   P P 

Therefore the number of F-isomorphism classes of e-cyclic Z3-covers of D is P 

              Z3 Z3          Iso(D' P, e, r) = 
p 3(p - 1)2(p + 1) 1 r Ell H'(G; P) (A,, -y)                                                                   -yEr 

+ (p - 1) (p + 1) 1 IV (G; Z3) (A2,-Y) I +p(p - 1) (p + 1) H1 (G; Z3) (A3 +P(p 1)2 (p + 1) X 
                        P P 

                                P-1 P-1 

 I IL Z3) (A4,-Y) 1 +P2 ( Z3)(A5,_X,,y) +P2 (P_ 1) Z3)(A6,X,Y)  I (G I P p+l) H1 (G; P (p+1 H'(G; P 
                               A=2 A=2 
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                 P-1 P-1 

           2 Z3) (A7,),,Y) 1 +P2 (p         +p H'(G; 1)(p+ 1) H'(G; Z3)(A8,-\, -Y) 
                            p p 

               A=2 A=2 

    +P 3(p + 1) H'(G- Z3)(Aq,.x,,-,,y) +P3(p H'(G; Z3)(A1o,i,-0 
                                   p p 

                  2<A<T<p-I 

  Let (A, -y) E II, x IF. 
  Case I.- A=A1 =13-

  Then [a] E H'(G; Z3) (A if and only if A, a'Y = a + 6s for some s (E C'(G; Z3).                     p p 

  Now, let a = ae, + be2 + ce3, a, b, C E C' (G; Zp), where el = t (100), e2 = t (010) and 
e3 = t(001). Furthermore, let s = ve, + we2 + ze3, v, W, z E C'(G; Zp). Then a7 = a + 6s if 
and only if a-~ = a + 6v, V = b + 6w, and 0 = c + 6z, i.e., (1, -~) [a] = [a], (1, -y) [b] = [b] and 
(1, -y) [c] = [c]. Note that [a], [b], [c] c HI (G; Zp) (','Y). Since [ae, +be2 +ce3l [a] el + [b] e2 + [c]e3, 
we have 

                      Bri (G' Z3) (Al,-y) H1 (G; Z (1,-y) 3.                                    p P) 

By Theorem 3.3 of [21], it follows that 

                Z3                     H'(G; p)(AiL,-y) P3(e(-y)-v(-y,l)-n(-y,l)-p(-y,l)+d(-y,I 

  Case 2: A A2-
  Similarly to case 1, we have 

                   Z3)(A2,-I) H"(G; Z2 (tD2,1,'Y) H1 (G; Zp) ("~Y)             H1(GI p p 

But, tD2,1 and D2,1 are conjugate in GL2(Zp), and so 

                              Z2 (tD2 Z2)(D2,1,-Y)                   H'(G; P) ',-Y) 1=1 H'(G; p 

 By Theorem 3 of [20] and Theorem 3.3 of [21], it follows that 

               -ff'(G; Z3)(A2,-I) p 2 -3v(-y, 1) +vo (-y, 1) -2p (-y, 1) +n I (-y, 1) -2n (-y, 1) 

p 

                                             +/-tl (-y, 1) +c(-y, 1) - di (-y, 1)+d~ (-y, 1) - do (-y, 1) +d(-Y, 1) 

 Case 3: A A3-

 Then we have 

                             Z3 3,-Y) 2,1,-Y)            H'(G; P) (A H1 (G; Zp) (1,'Y) H1 (G; Z2)(D 

p By case 2, it follows that 

                    H'(G; Z3) (A3,Y) H'(G; Z3)(A2,,y) 
                                 p p 

 Case 4: A = A4-
 Then D3,1 and A4 are conjugate in GL3(Zp),,, and so 

                    H'(G; Z3) (A4,-Y) H'(G; Z3)(D3,1,'Y) 
                                 p p 
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By Theorem 3 of [20], it follows that 

             H1 (G;, Z3)(A4,-Y) 

p 

                                                +2pi (-y,l)+c(-y,l)-dl(-1,1)+2d2(^I,I) -do (-y,l) 

  Case 5: A = A5 ,,\. 
  Then we have 

             H'(G; Z3 ) (A5,,\,-Y) H 1 (G; Zp) (',-Y) 1 2_ 1 H 1 (G; Z )(A, -Y) 
                         p p 

By Theorem 3.3 of [21], it follows that 

             Z3)(A5,A,-Y) p3c(-y)-2v(-y,l)-v(-y,A)-2K(-y,l)-r,(-y,A)-2p(-y,l)-tt(-y,A)+2d(-y,l)+d(-y,,\)    H1(GI p 

  Case 6: A = A6,,\-
  Then we have 

             H1 (G; Z3)(A6,>,,,y) H'(G; Z 2)(132,1,-1) H'(G;Z (A,-y)                         p p P) 

By Theorem 3 of [20] and Theorem 3.3 of [21], it follows that 

          H1 (G; Z3)(A6,A,,,-Y) 

p 

                               +c(-y,l)-dl(-y,l)+d2(-y,l)-do(-y,l)-v(-y,A)-[t(-y,A)-K(-y,A)+d(-y,A) 

  Case 7: A A7 ,,\-
  Then we have 

                            Z3 (A7,,\,-Y) 2.,             H'(G; p H' (G; Zp) (','Y) H 1 (G; Zp) 

By Theorem 3.3 of [21], it follows that 

             Z3) (A7,A -Y) p8E(-y)-2v(-y,,\)-v(-y,l)-2r,(-y,A)-K(-y,l)-2tt(-y,,\)-g(-y,l)+2d(-y,A)+d(-y,l)    H1 (GI p 

  Case 8: A = A8,,\. 
 Then we have 

             H1 (G; Z3) (A8,,\,-y) H'(G; Z2) (D2,-\,-Y) H1 (G; Z ) (1,7) 
                        p p p 

By Theorem 3 of [20] and Theorem 3.3 of [21], it follows that 

          H1 (G; Z3)(A8,,\,-y) 

p 

                               +c(-y,A) - di (-y,A) +d2 (-y,A) -do (-y,,\) -v(7,I) -p(-y, 1) - r-(,y, 1) +d(,y, 1) 

  Case 9: A = Ag ,,\,,. 
 Then we have 

     H1 (G; Z3) (Ag,,\,,,7) H1 (G; Zp) (',-Y) H1 (G; Zp) (",-Y) H1 (G; Zp) (T,7) 

p



By Theorem 3.3 of [21], it follows that 

            H'(G; Z3)(Ag,,\,,,-y) 

P 

                                             p (-y, 1) - tt (-y, A) - It (-y, -r) + d (-y, 1) + d (-y,,\) + d (-y, -r) 

  Case 10: A = A10,j. 

  Then we have 

                     Z3)(Alo,i,-y) Z2)(B',-y)             H'(G; P H'(G; Zp) (1,'Y) H1 (G; P 2 

By Theorem 4 of [20] and Theorem 3.3 of [21], it follows that 

                H'(G; Z3)(Ajo,j,-y) 1= P3.E(-y)-2v(-y,13'2)-2r.(-y,B'2)-2p(-y,B'2)+2d(-Y,B'2) 

P 

  By cases 1,2, ---, 9 and 10, the result follows. Q.E.D. 

Corollary 1 Let D be a connected symmetric digraph, G its underlying graph, p(> 3) prime 
and g G Z3 . Then the number of I-isomorphism classes of g_CyCliC Z3-covers- of D is 

         P P 

               Z3, g, 1) jp31 + (p + 1) (p3 _ p2 - )p2B             Iso(D, P P I(p-1)2(p+j) 

                       + p(p'-p'-2 P3 + PI + p + I)pB 

where B = B(G) E(G) V(G) 1 +1 is the Betti-number of G. 

 Proof Since I 111, we have E(I) = I E(G) 1, p(l, z) = [t, (1, A) r., (1, A) di (1, A) 
do (1, A) = d2 (1, A) 0, where z = A, B'. Moreover, we have 

2 

              IV(G)l ifz=A=l, 0 ifz=A=l,      V(I' Z) 0 
otherwise, Z) I E(G) I otherwise,                 

I V(G) I if A = 19 1 if A = I ,          110 (1, A) 0 
otherwise and c(l, A) 0 otherwise. 

Furthermore, we have 

                     d(l, z) I if z = A I , 
                                    0 otherwise. 

Q.E.D. 
 This is the formula for r 3 in [16, Theorem 4.4].
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                 3. The conjugacy classes of GL3(ZP), 

Let p an odd prime number. Then we consider all conjugacy c lasses of GL3(Zp),,, where e = (100)'. 

Theorem 4 Let p be an odd prime. Then the representatives of the conjugacy classes of 
GL3(Zp), are given as follows: 

                                  'D 2,1  Al 13 0 1 0 A2 A3 D
2,1 A4 0 1 0           0 0 1 0 1 1 

              1 0 0 'D
2,1       A

5,,\ 0 1 0 (2 < A < p, - 1)IA6,A                                        A (2 < A < p -

           L 0 0 A 

            1 0 0 
     A7,A 0 A 0 (2 < A < p - 1) A (2 < A < p -                                                                              8,,X                                                         D

2,A             0 0 A 

                                               (0 < i < P2_1,i Ag,A,, 0 A 0 (2 < A:A T < p-1)7A,O,i 0 (mod p+ 1)) 
       0 0 B2 

 Proof Let H = GL3(Zp). Then we have 

              lie 1 a b a7b=011,---,p- I; BE GL2(Zp)}-
                 0 B 

 Now, let 

       A 1. 0 0 ],, F d B ID= I 
             0 B 0 D U v m n 

where c, d 01 1, - - - p - 1; B, D c GL2 (Zp). Then we have 

                                   I a )3                         F-1AF 
= 
                                    0 D-1BD 

where 

         a c + I/ I D I J-(cn - dm) (sk + tm) + (cl - dk)(uk + vm)j, 

          ~3 = d + I/ I D -(cn - dm)(sl + tn) + (cl - dk)(ul + vn)j. 

 Next, we consider the condition for B and D to satisfy the equation D 7 'BD = B. Suppose that 

BD = DB. Then we have 

                 sk+tm sl+tn sk + ul tk + vl           BD 
7DB =               uk+vm ul+vn 1 13- [ sm+un tm+vn



If BD DB, then 

                 sk+tm= sk+ul 
                                      U1 tM 

                sl + tn = tk + v1                                          It. e. t(n - k) 1,(v - s)                  uk+ vm=sm+un 
u(n - k) m(v s) 

                ul + vn tm + vn 

Thus, the (1, 2)-array of F-1AF is 

              C + 1/ 1 D I (1m - nk)(cs + du) (I - s)c ud. 

Furthermore, the (1, 3)-array of F-1AF is 

              d+11 I D 1,(lm-nk)(ct+dv) -tc+ (I -v)d. 

For any a, b G ZP, set 
                                 s)c - ud = a 

                         -tc + (I - v)d = b 

Then, there exist c, d c ZP satisfying if and only if 

                                                1-8 -U 
             det (I - B) det (I - B') det 01 

V i.e., I - B is regular. Note that I - B is not regular if and only if I is one of the eigenvalues of B. 
  But, the representatives of conjugacy classes of GL2 (Zp) are given as follows: 

                                1), D2,A A 0       C A A 1 (1 < A < p 1 A (1 < A < p 
    B 'r 1 (1 < A < p - 1),B'        X, A - 2 (0 < i < P 2 1 1 0 (mod p + 1))7 

where we select only one of i and i' such that ip =- i'(mod p2 _ 1) for B' (see [ I I]). The cardinalities 
. 2 

and the number of the first, second,. fourth type of conjug4cy classes are as follows: 

       1, (P- 1)(P+ '),P(P+ 1)'P(P - 1).;P- 1'P- 1, -(p- 1)(p - 2), _P(P - I). 

2 Then each of matrices QN, D2,A(2 < A < p - 1) and BA,,(2 < A T < p - 1) does not contain 
                                                  < i- < p2,_ I as its eigenvalue. By Lemma 5 of [20], each B' (0 0 (mod p + 1)) does not 

2 contain I as its eigenvalue. Thus, 

                              I a b                      F I 'AF for any a, b (E ZP)                         0 B 

where B = C,\, D2,A, B,\,,, B'. Therefore the following four matrices are given as the representatives 2 
of conj ug,acy classes of GL2 (Zp)e 

            1 0 0 

            01 A 0 (2 < A < p 1) (2 < A <P 

D 

                    0 0 A 2.,. A 
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                            1 (0 
< i <P2 1,i#0      0 A 0 (2 < A =,4 -r < P - 1)5 (mod p + 1))                                                 , B' 

     0 0 2 

The cardinalities -and the number of the above four types of, conjugacy classes are as follows: 

    2 2(p_l)(P+l 3 (P 3(p     P )P P + 1))P 1);p-2,p-2, (p-2)(p-3),-p(p-1)_ 
                                      2 2 

 The representatives of conjugacy classes of GL2(Zp) which contain I as eigenvalues are given 
follows: 

       C, 12 D2,1. B ,,x (2 < A < p -

A 

 Case 1: R C1. 
                    F-113F 13 f Or any F GL2(Zp)e-

 Next, let 

            1 1 0 

        A 0 1 0 F 1 c d D a b (an - bm 54 0). 
                        0 D m 

           L 0 0 1 

Then we have 
                                     I a b 

                          F-1AF 0 1 0 

                               L 0 0 1 
for anya,bE ZP. 

 Therefore,the following two matrices are given as the representatives of conjugacy classes 
GL2 (Zp)e: 

                            1 1 0 

                            13, 0 1 0 

                            0 0 1 

The cardinalities and the number of the above two types of conjugacy classes are as follows: 

                               11P 2 1; 1, 1. 

  Case 2: B = D2 ,1-
 Then, let 

              1 0 0 

         A 0 1 0 IF= D (k 0).                 0 1 1 0 D m k- I
Then we have

F = [ I 

0 F-'AF

 c -

D 

0 

0 
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D 

0 

0 

1

as

of



for any a E ZP* 
  Next, let 

            1 0 1 
                                C -a+M b 0         A = 0 1 0 IF= ID (b 0). 

             0 1 1 0 D m b 

Then we have 
                                     1 a b 

                          F-'AF 0 1 0 
                               0 1 1 

for any a Z and b Z*             P P* 
  Therefore the following two matrices are given as the representatives of conjugacy classes of 
GL2 (Zp) e: 

                      1 0 0 1 0 1 
                        0 1 0 1 0 1 0 
                      0 1 1 0 1 1 

The cardinalities and the number of the above two types of conjugacy classes are as follows: 

                 P(P _ 1)(P + 1),P(P 1)2(p + 1); 1, 1. 

  Case 3: B = Bj,A. 

  Then, let 

            1 0 0 
1 C (I - A)-1b k 0        A = 0 1 0 F 
0 D ID 0 (kn =,4 0). 

           L 0 0 A 

Then we have 
                               1 0 b 

                          F-1AF o i o 

                               0 0 A 

for any b E ZP, 
 Next, let

            1 1 0 

       A= o 1 o 

           0 0 A 

Then we have 

for any a G Z* and b Z             P P*

7F= [ 1 c b(I -A)-'          0- D 

           1 a 

   F-IAF o i 

           0 0 
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 7D= a 0 (an   1 0 n]
b 

0. 

A



  Therefore, the following two matrices are given as the representatives of conjugacy classes of 
GL2 (Zp)e: 

            1 0 0 1 1 0 

             0 1 0 (2 < A < p - 1), 0 1 0 (2 < A < p, -
            0 0 A 0 0 A 

The cardinalities and the number of the above two types of conjugacy classes are as follows: 

                  P 2(p + 1)'p2(p 1)(p + 1); p - 2,p - 2. 

Q.E.D. 
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