# Note on Radius of Posets Whose Double Bound Graphs Are the Same 

Shin-ichi IWAI, Kenjiro OGAWA and Morimasa TSUCHIYA<br>Department of Mathematical Sciences, Tokai University<br>Hiratsuka 259-1292, JAPAN<br>e-mail:tsuchiya@ss.u-tokai.ac.jp


#### Abstract

In this paper, we consider some properties on a family $\mathcal{P}_{\mathrm{DB}}(G)$ of posets whose corresponding double bound graphs are the same graph $G$. We deal with distances of posets in $\mathcal{P}_{\mathrm{DB}}(G)$. Furthermore we consider the radius of $\mathcal{P}_{\mathrm{DB}}(G)$ and extremal graphs on radii.


## Introduction

In this paper, we consider finite undirected simple graphs. For a poset $P=(X, \leq)$ and $x \in X$, $L_{P}(x)=\{y \in X ; y<x\}$ and $U_{P}(x)=\{y \in X ; y>x\}$. $\operatorname{Max}(P)$ is the set of all maximal elements of $P . \operatorname{Min}(P)$ is the set of all minimal elements of $P$.

For a poset $P=(X, \leq)$, the double bound graph ( $D B$-graph $)$ is the graph $\mathrm{DB}(P)=\left(X, E_{\mathrm{DB}(P)}\right)$, where $u v \in E_{\mathrm{DB}(P)}$ if and only if $u \neq v$ and there exist $m, n \in X$ such that $n \leq u, v \leq m$. We say that a graph $G$ is a $D B$-graph if there exists a poset whose double bound graph is isomorphic to $G$. This concept was introduced by McMorris and Zaslavsky [3].

A characterization of double bound graphs can be found in [1] as follows: For a graph $G$ with two disjoint independent subsets $M$ and $N$ of $V(G)$ and $v \in V(G)-(M \cup N)$, define the sets $U(v)=\{u \in M ; u v \in E(G)\}, L(v)=\{u \in N ; u v \in E(G)\}$. A clique in the graph $G$ is the vertex set of a maximal complete subgraph, and a family $\mathcal{C}$ of complete subgraphs edge covers $G$ if and only if for each edge $u v \in E(G)$, there exists $C \in \mathcal{C}$ such that $u, v \in C$.

Theorem 1 (D. Diny [1]) A graph $G$ is a DB-graph if and only if there exists a family $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ of complete subgraphs of $G$ and disjoint independent subsets $M$ and $N$ such that
(1) $\mathcal{C}$ edge covers $G$,
(2) for each $C_{i}$, there exist $m_{i} \in M, n_{i} \in N$ such that $\left\{m_{i}, n_{i}\right\} \subseteq C_{i}$ and $\left\{m_{i}, n_{i}\right\} \nsubseteq C_{j}$ for all $i \neq j$, and
(3) for each $v \in V(G)-(M \cup N),|U(v)| \times|L(v)|$ equals the number of elements of $\mathcal{C}$ containing $v$.

Furthermore, a family $\mathcal{C}$ is the unique, minimal edge covering family of cliques in $G$.
For a DB-graph $G$ and an edge clique cover $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ satisfying the conditions of Theorem $1, M$ is an upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ of $G$ and $N$ is a lower kernel $\mathrm{LK}_{\mathrm{DB}}(G)$ of $G$. In the following sections, we consider a fixed labeled DB-graph $G$ with a fixed upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ and a fixed lower kernel $\mathrm{LK}_{\mathrm{DB}}(G)$.

For a DB-graph $G, \mathcal{P}_{\mathrm{DB}}(G)=\left\{P ; \mathrm{DB}(P)=G, \operatorname{Max}(P)=\mathrm{UK}_{\mathrm{DB}}(G), \operatorname{Min}(P)=\mathrm{LK}_{\mathrm{DB}}(G)\right\}$. Then $\mathcal{P}_{\mathrm{DB}}(G)$ is a poset by set inclusions. In [2] and [5], we deal with a distance of posets in $\mathcal{P}_{\mathrm{DB}}(G)$ and we obtain the diameter of $\mathcal{P}_{\mathrm{DB}}(G)$. In this paper we consider some properties on the radius of $\mathcal{P}_{\mathrm{DB}}(G)$.

## 1. Preliminary

For a DB-graph $G$, the double canonical poset of $G$ is the poset $d_{\text {_can }}(G)=\left(V(G), \leq_{d_{-} c a n(G)}\right)$, where $x \leq_{d_{-} \text {can }(G)} y$ if and only if:
(1) $y \in \mathrm{UK}_{\mathrm{DB}}(G)$ and $x y \in E(G)$, or
(2) $x \in \mathrm{LK}_{\mathrm{DB}}(G)$ and $x y \in E(G)$, or
(3) $x=y$.

Then for a DB-graph $G, d_{-} \operatorname{can}(G)$ is the minimum poset of $\mathcal{P}_{\mathrm{DB}}(G)$.
Let $x$ and $y$ be two distinct elements of poset $P$. Suppose that $x \notin \operatorname{Min}(P), y \notin \operatorname{Max}(P)$ and $x$ is covered by $y$. Then, another poset $P_{x<y}^{--}$is obtained from $P$ by subtracting the relation $x \leq y$ from $P$, and we call this transformation the d_deletion of $x<y$ ( $x<y$-d_deletion). Now let $x$ and $y$ be mutually incomparable elements in $P$ such that $x \notin \operatorname{Min}(P), y \notin \operatorname{Max}(P), U_{P}(y) \subseteq U_{P}(x)$ and $L_{P}(y) \supseteq L_{P}(x)$. Then, a poset $P_{x<y}^{++}$is obtained from $P$ by adding the relation $x \leq y$ to $P$. We call this transformation the d_addition of $x<y$ ( $x<y$-d_addition).

We easily obtain the following facts on these transformations. Any posets $P$ and $P_{x<y}^{--}$have the same DB-graph, and $P$ and $P_{x<y}^{++}$also have the same DB-graph. Moreover $x<y$-d_addition and $x<y$-d_deletion are inverse transformations of each other. By these facts, we obtain the following result on transformations between posets.

Theorem 2 (H. Era, K. Ogawa and M. Tsuchiya [2]) Let $G$ be a DB-graph and let $P$ and $Q$ be two posets in $\mathcal{P}_{\mathrm{DB}}(G)$.
(1) $P$ can be transformed into $Q$ by a sequence of d_deletions and d_additions of order relations.
(2) Every poset in $\mathcal{P}_{\mathrm{DB}}(G)$ is obtained from d_can $(G)$ by d_additions only.

For a DB-graph $G$ with an upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ and a lower kernel $\mathrm{LK}_{\mathrm{DB}}(G)$, and $x \in$ $V(G)-\left(\mathrm{UK}_{\mathrm{DB}}(G) \cup \mathrm{LK}_{\mathrm{DB}}(G)\right), \mathrm{Ma}(x)=\left\{y \in \mathrm{UK}_{\mathrm{DB}}(G) ; x y \in E(G)\right\}, \mathrm{Mi}(x)=\{y \in$ $\left.\mathrm{LK}_{\mathrm{DB}}(G) ; x y \in E(G)\right\}$. Furthermore we also know some properties on a maximal poset.

Theorem 3 (H. Era, K. Ogawa and M. Tsuchiya [2]) Let $G$ be a DB-graph with an upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ and a lower kernel $\mathrm{LK}_{\mathrm{DB}}(G)$, and $P$ be a maximal poset on $\mathcal{P}_{\mathrm{DB}}(G)$.
(1) For all $x, y \in V(G)-\left(\mathrm{UK}_{\mathrm{DB}}(G) \cup \mathrm{LK}_{\mathrm{DB}}(G)\right)$ such that $M a(x) \neq M a(y)$ or $M i(x) \neq$ $M i(y), x \leq_{P} y$ if and only if $M a(x) \supseteq M a(y)$ and $M i(x) \subseteq M i(y)$.
(2) For all $x, y \in V(G)-\left(\mathrm{UK}_{\mathrm{DB}}(G) \cup \mathrm{LK}_{\mathrm{DB}}(G)\right)$ such that $M a(x)=M a(y)$ and $M i(x)=$ $M i(y), x$ is comparable with $y$.

Based on these results, we deal with distances of posets whose DB-graphs are the same.
In a DB-graph $G$ with an upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ and a lower kernel $\mathrm{LK}_{\mathrm{DB}}(G)$, the distance between posets $P$ and $Q$ in $\mathcal{P}_{\mathrm{DB}}(G)$, denoted by $d_{\mathrm{DB}}(P, Q)$, is the minimum number of transformations from $P$ to $Q$ by d_deletions and d_additions. The diameter $d(X)$ is $\max \left\{d_{\mathrm{DB}}(P, Q) ; P, Q \in X\right\}$. For a DB-graph with an upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ and a lower kernel $\mathrm{LK}_{\mathrm{DB}}(G)$, and two subsets $S \subseteq \mathrm{UK}_{\mathrm{DB}}(G), T \subseteq \mathrm{LK}_{\mathrm{DB}}(G)$,

$$
I(S, T)=\bigcap_{\substack{m \in S, n \in T}} N_{G}(n, m)-\bigcup_{\substack{m \in \mathrm{UK}_{\mathrm{DB}}(G)-S, n \in \mathrm{LK}_{\mathrm{DB}}(G)-T}} N_{G}(n, m)
$$

where $N_{G}(n, m)=\{v \in V(G) ; v n, v m \in E(G)\}$. For a DB-graph with an upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ and a lower kernel $\operatorname{LK}_{\mathrm{DB}}(G)$, let $\Sigma_{1}^{d}$ and $\Sigma_{2}^{d}$ denote the following:

$$
\begin{gathered}
\Sigma_{1}^{d}=\sum_{\substack{\emptyset \neq S \subseteq \mathrm{UK}_{\mathrm{DB}}(G), \emptyset \neq T \subseteq L K_{\mathrm{DB}}(G)}}\binom{|I(S, T)|}{2}, \\
\Sigma_{2}^{d}=\sum_{\substack{\emptyset \neq S_{1} \subseteq S_{2} \subseteq \mathrm{UK}_{\mathrm{DB}}(G), \emptyset \neq T_{2} \subseteq T_{1} \subseteq \mathrm{Gnd} \\
S_{1} \neq S_{2} \text { or } \text { or }_{\mathrm{DB}} \neq T_{1} \neq T_{2}}}\left(\left|I\left(S_{1}, T_{1}\right)\right| \times\left|I\left(S_{2}, T_{2}\right)\right|\right) \\
\end{gathered}
$$

Then $\Sigma_{1}^{d}$ is the number of pairs $x, y \in V(G)-\left(\mathrm{UK}_{\mathrm{DB}}(G) \cup \mathrm{LK}_{\mathrm{DB}}(G)\right)$ such that $\mathrm{Ma}(x)=\mathrm{Ma}(y)$ and $\operatorname{Mi}(x)=\operatorname{Mi}(y)$, and $\Sigma_{2}^{d}$ is the number of pairs $x, y \in V(G)-\left(\mathrm{UK}_{\mathrm{DB}}(G) \cup \mathrm{LK}_{\mathrm{DB}}(G)\right)$ such that $\mathrm{Ma}(x) \neq \mathrm{Ma}(y)$ or $\mathrm{Mi}(x) \neq \mathrm{Mi}(y)$, and $\mathrm{Ma}(x) \subseteq \mathrm{Ma}(y)$ and $\mathrm{Mi}(x) \supseteq \operatorname{Mi}(y)$.

For $P, Q \in \mathcal{P}_{\mathrm{DB}}(G),[P, Q]=\left\{R \in \mathcal{P}_{\mathrm{DB}}(G) ; P \leq_{\mathcal{P}_{\mathrm{DB}}(G)} R \leq_{\mathcal{P}_{\mathrm{DB}}(G)} Q\right\}$. We already know the followings.

Theorem 4 (H. Era, K. Ogawa and M. Tsuchiya [2]) Let $G$ be a DB-graph with an upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ and a lower kernel $\mathrm{LK}_{\mathrm{DB}}(G)$, and $P_{\max }^{d}$ be a maximal poset in $\mathcal{P}_{\mathrm{DB}}(G)$. Then

$$
d\left(\left[\mathrm{~d} \_\operatorname{can}(G), P_{\max }^{d}\right]\right)=\Sigma_{1}^{d}+\Sigma_{2}^{d}
$$

Theorem 5 (H. Era, K. Ogawa and M. Tsuchiya [2]) For a DB-graph $G$ with an upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ and a lower kernel $\mathrm{LK}_{\mathrm{DB}}(G)$,

$$
d\left(\mathcal{P}_{\mathrm{DB}}(G)\right)=2 \Sigma_{1}^{d}+\Sigma_{2}^{d} .
$$

## 2. The radius of $\mathcal{P}_{\mathrm{DB}}(G)$

In this section, we consider the radius of $\mathcal{P}_{\mathrm{DB}}(G)$. The eccentricity $e(P)$ is $\max \left\{d_{\mathrm{DB}}(P, Q) ; Q \in\right.$ $\left.\mathcal{P}_{\mathrm{DB}}(G)\right\}$. The radius $r\left(\mathcal{P}_{\mathrm{DB}}(G)\right)$ is $\min \left\{e(P) ; P \in \mathcal{P}_{\mathrm{DB}}(G)\right\}$. We have the following result.

Proposition 6 For a DB-graph $G$ with an upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ and a lower kernel $\mathrm{LK}_{\mathrm{DB}}(G)$,

$$
\Sigma_{1}^{d}+\left\lceil\Sigma_{2}^{d} / 2\right\rceil \leq r\left(\mathcal{P}_{\mathrm{DB}}(G)\right) \leq \Sigma_{1}^{d}+\Sigma_{2}^{d}
$$

Proof. By the definitions of the diameter and the radius, $r\left(\mathcal{P}_{\mathrm{DB}}(G)\right) \leq d\left(\mathcal{P}_{\mathrm{DB}}(G)\right) \leq 2 r\left(\mathcal{P}_{\mathrm{DB}}(G)\right)$. Therefore $\Sigma_{1}^{d}+\left\lceil\Sigma_{2}^{d} / 2\right\rceil=\left\lceil d\left(\mathcal{P}_{\mathrm{DB}}(G)\right) / 2\right\rceil \leq r\left(\mathcal{P}_{\mathrm{DB}}(G)\right)$. By Theorem 4, $d\left(\left[\right.\right.$ d_can $\left.\left.(G), P_{\max }^{d}\right]\right)=$ $\Sigma_{1}^{d}+\Sigma_{2}^{d}$ and $e($ d_can $(G))=\Sigma_{1}^{d}+\Sigma_{2}^{d}$. Thus $r\left(\mathcal{P}_{\mathrm{DB}}(G)\right) \leq \Sigma_{1}^{d}+\Sigma_{2}^{d}$,

Next we consider graphs for which the equalities in Proposition 6 are hold. We have the following results.

Proposition 7 Let $G$ be a DB-graph with an upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ and a lower kernel $\mathrm{LK}_{\mathrm{DB}}(G)$. For any elements $x, y \in V(G)-\left(\mathrm{UK}_{\mathrm{DB}}(G) \cup \mathrm{LK}_{\mathrm{DB}}(G)\right)$ such that $\mathrm{Ma}(x) \supseteq \mathrm{Ma}(y)$ and $\operatorname{Mi}(x) \subseteq \operatorname{Mi}(y)$, if there exist no elements $z \in V(G)-\left(\operatorname{UK}_{\mathrm{DB}}(G) \cup \mathrm{LK}_{\mathrm{DB}}(G)\right)$ such that $\mathrm{Ma}(x) \supseteq \mathrm{Ma}(z) \supseteq \mathrm{Ma}(y)$ and $\mathrm{Mi}(x) \subseteq \operatorname{Mi}(z) \subseteq \operatorname{Mi}(y)$, then $r\left(\mathcal{P}_{\mathrm{DB}}(G)\right)=\Sigma_{1}^{d}+\Sigma_{2}^{d}$.

Proof. Let $G$ be a graph satisfying the conditions. For a comparable pair $x, y \in V(G)-$ $\left(\mathrm{UK}_{\mathrm{DB}}(G) \cup \mathrm{LK}_{\mathrm{DB}}(G)\right)$ of a poset $P \in \mathcal{P}_{\mathrm{DB}}(G)$ such that $\mathrm{Ma}(x) \supseteq \mathrm{Ma}(y)$ and $\mathrm{Mi}(x) \subseteq \mathrm{Mi}(y)$, we can obtain $P_{x<y}^{--}$by a d_deletion on $x<y$. Furthermore for an incomparable pair $x, y \in V(G)-$ $\left(\mathrm{UK}_{\mathrm{DB}}(G) \cup \mathrm{LK}_{\mathrm{DB}}(G)\right)$ of a poset $P \in \mathcal{P}_{\mathrm{DB}}(G)$ such that $\mathrm{Ma}(x) \supseteq \mathrm{Ma}(y)$ and $\mathrm{Mi}(x) \subseteq \mathrm{Mi}(y)$, we can obtain $P_{x<y}^{++}$by an addition on $x<y$. Therefore for a poset $P \in \mathcal{P}_{\mathrm{DB}}(G)$, we can obtain a poset $Q \in \mathcal{P}_{\mathrm{DB}}(G)$ such that if $x \leq_{P} y$ and $\mathrm{Ma}(x) \supseteq \mathrm{Ma}(y)$ and $\operatorname{Mi}(x) \subseteq \operatorname{Mi}(y)$, then $x$ is incomparable to $y$ in $Q$, and if $x$ is incomparable to $y$ in $P$ and $\mathrm{Ma}(x) \supseteq \mathrm{Ma}(y)$ and $\mathrm{Mi}(x) \subseteq \operatorname{Mi}(y)$, then $x \leq_{Q} y$. Hence for any poset $P \in \mathcal{P}_{\mathrm{DB}}(G), e(P) \geq \Sigma_{1}^{d}+\Sigma_{2}^{d}$. Thus $r\left(\mathcal{P}_{\mathrm{DB}}(G)\right) \geq \Sigma_{1}^{d}+\Sigma_{2}^{d}$. By Theorem 4, $r\left(\mathcal{P}_{\mathrm{DB}}(G)\right)=\Sigma_{1}^{d}+\Sigma_{2}^{d}$.

We define a special poset in $\mathcal{P}_{\mathrm{DB}}(G)$. For a DB-graph $G$, the double neutral poset of $G$ is the poset d_neu $(G)=\left(V(G), \leq_{\text {d_neu }(G)}\right)$, where $x \leq_{\text {d_neu }(G)} y$ if and only if
(1) $y \in \mathrm{UK}_{\mathrm{DB}}(G)$ and $x y \in E(G)$, or
(2) $x \in \mathrm{LK}_{\mathrm{DB}}(G)$ and $x y \in E(G)$, or
(3) $x=y$, or
(4)(a) $\mathrm{Ma}(x) \neq \mathrm{Ma}(y)$ or $\mathrm{Mi}(x) \neq \mathrm{Mi}(y)$, and
(b) $\mathrm{Ma}(x) \supseteq \mathrm{Ma}(y)$, and
(c) $\operatorname{Mi}(x) \subseteq \operatorname{Mi}(y)$.

We have the following result.
Lemma 8 For a poset $P$ in $\mathcal{P}_{\mathrm{DB}}(G)$, there exists a poset $Q$ in [d_can $(G)$, d_neu $(G)$ ] such that for any $x, y \in V(Q), x \leq_{Q} y$ if and only if $x \leq_{P} y$ and $x \leq_{d_{-n e u}(G)} y$.

Proof. We construct a poset $Q$ from $P$ as follows: (1) $V(P)=V(Q)$ (2)if $x \leq_{P} y$ and $x \leq_{\text {d_neu }(G)} y$, then $x \leq_{Q} y$. Then $Q$ is the intersection of $P$ and d_neu $(G)$. Therefore $Q$ is a poset in $\mathcal{P}_{\mathrm{DB}}(G)$ and $Q \in[$ d_can $(G)$, d_neu $(G)]$.

Noting that a poset $Q$ of Lemma 8 is obtained from $P$ by d_deletions only, we know that the poset $P$ is obtained from $Q$ by d_additions only. Thus we have the following result.

Proposition 9 Let $G$ be a DB-graph with an upper kernel $\mathrm{UK}_{\mathrm{DB}}(G)$ and a lower kernel $\mathrm{LK}_{\mathrm{DB}}(G)$. If $V(G)-\left(\mathrm{UK}_{\mathrm{DB}}(G) \cup \mathrm{LK}_{\mathrm{DB}}(G)\right)=\left\{u_{1}, u_{2}, u_{3}, v_{1}, \ldots, v_{n}\right\}$ satisfies the following conditions, then $r\left(\mathcal{P}_{\mathrm{DB}}(G)\right)=\Sigma_{1}^{d}+\left\lceil\Sigma_{2}^{d} / 2\right\rceil$ :
(1) $\mathrm{Ma}\left(u_{i}\right) \supseteq \operatorname{Ma}\left(u_{j}\right)$ and $\operatorname{Mi}\left(u_{i}\right) \subset \operatorname{Mi}\left(u_{j}\right)$, or $\mathrm{Ma}\left(u_{i}\right) \supset \operatorname{Ma}\left(u_{j}\right)$ and $\operatorname{Mi}\left(u_{i}\right) \subseteq \operatorname{Mi}\left(u_{j}\right)$ for $1 \leq i<j \leq 3$,
(2) $\mathrm{Ma}\left(u_{i}\right) \| \mathrm{Ma}\left(v_{j}\right)$ or $\operatorname{Mi}\left(u_{i}\right) \| \operatorname{Mi}\left(v_{j}\right)$ for ${ }^{\forall} i=1,2,3$ and ${ }^{\forall} j=1, \ldots, n$, or
(3) $\mathrm{Ma}\left(v_{i}\right) \not \supset \mathrm{Ma}\left(v_{j}\right)$ and $\mathrm{Mi}\left(v_{i}\right) \not \subset \mathrm{Mi}\left(v_{j}\right)$ for ${ }^{\forall} i, j(i \neq j)$.

Proof. By Lemma 8, for a poset $P \in \mathcal{P}_{\mathrm{DB}}(G)$, there exists a poset $Q \in[$ d_can $(G)$, d_neu $(G)]$ such that $d_{\mathrm{DB}}(P, Q) \leq \Sigma_{1}^{d}$. By the condition (1), $\Sigma_{2}^{d}=3$. Let $R$ be a poset in $\mathcal{P}_{\mathrm{DB}}(G)$, whose relations are the relations of d_can $(G)$ and the followings: $u_{1} \leq_{R} u_{3}, u_{1} \not Z_{R} u_{2}$ and $u_{2} \not_{R}$ $u_{3}$. Then for any poset $Q \in\left[\mathrm{~d} \_\operatorname{can}(G)\right.$, d_neu $\left.(G)\right], d_{\mathrm{DB}}(Q, R) \leq 2=\left\lceil\Sigma_{2}^{d} / 2\right\rceil$. Therefore for a poset $P \in \mathcal{P}_{\mathrm{DB}}(G), d_{\mathrm{DB}}(P, R) \leq d_{\mathrm{DB}}(P, Q)+d_{\mathrm{DB}}(Q, R) \leq \Sigma_{1}^{d}+\left\lceil\Sigma_{2}^{d} / 2\right\rceil$. By Proposition 6, $r\left(\mathcal{P}_{\mathrm{DB}}(G)\right)=\Sigma_{1}^{d}+\left\lceil\Sigma_{2}^{d} / 2\right\rceil$.

## 3. Acknowledgments.

Authors thank Prof. H. Era for his valuable suggestions.

## References

［1］D．Diny，The double bound graph of a partially ordered set，Journal of Combinatorics，In－ formation \＆System Sciences，10（1985），52－56．
［2］H．Era，K．Ogawa and M．Tsuchiya，On transformations of posets which have the same bound graph，accepted in Discrete Mathematics．
［3］F．R．McMorris and T．Zaslavsky，Bound graphs of a partially orders set，Journal of Combi－ natorics，Information 8 System Sciences，7（1982），134－138．
［4］K．Ogawa，On distances of posets with the same upper bound graphs，Yokohama Mathematical Journal，47（1999），231－237．
［5］K．Ogawa and M．Tsuchiya，Note on distances of posets whose double bound graphs are the same，preprint．
（論文：同じ双界グラフを持つ半順序集合の族の半径について 著者：いわい しんいち，おが わけんじろう，東海大学大学院理学研究科，つちやもりまさ，東海大学理学部 受付：平成 12年12月22日）

