Complete Bipartite Geometric Graphs and Alternating Paths

Atsushi Kaneko
Department of Electronic Engineering
Kogakuin University
Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677, Japan
e-mail:kaneko@ee.kogakuin.ac.jp
M. Kano
Department of Computer and Information Sciences
Ibaraki University, Hitachi, 316-8511 Japan
e-mail:kano@cis.ibaraki.ac.jp

Abstract

Let A and B be two disjoint sets of points in the plane such that no three points of $A \cup B$ are collinear, and let n be the number of points in A. A geometric complete bipartite graph $K(A, B)$ is a complete bipartite graph with partite sets A and B which is drawn in the plane such that each edge of $K(A, B)$ is a straight-line segment. We prove that (i) If $|B| \geq(n+1)(2 n-4)+1$, then the geometric complete bipartite graph $K(A, B)$ contains a path P without crossings such that $V(P)$ contains the set A. (ii) There exists a configuration of $A \cup B$ with $|B|=\frac{n^{2}}{16}+\frac{n}{2}-1$ such that in $K(A, B)$ every path containing the set A has at least one crossing.

\section*{1 Introduction}

Let G be a finite graph without loops or multiple edges. We denote by $V(G)$ and $E(G)$ the set of vertices and the set of edges of G respectively. For a vertex v of G we denote by $\operatorname{deg}_{G}(v)$ the degree of v in G. For a set X we denote by $|\mathrm{X}|$ the cardinality of X . A geometric graph $G=(V(G), E(G))$ is a graph drawn in the plane such that $V(G)$ is a set of points in the plane, no three of which are collinear, and $E(G)$ is a set of (possibly crossing) straight-line segments whose endpoints belong to $V(G)$. If a geometric graph G is a complete bipartite graph with partite sets A and B i.e., $V(G)=A \cup B$ then G is denoted by $K(A, B)$, which may be called a geometric complete bipartite graph.

In 1996, M. Abellanas, J. García, G. Hernández, M. Noy and P. Ramos [1] showed the following result.

Theorem A (Abellanas et al. [1]) Let A and B be two disjoint sets of points in the plane such that $\mid A$
 contains a spanning tree T without crossings such that the maximum degree of T is $O \log (|A|)$.

In 1999, Kaneko [3] improved their result and proved the following theorem.
Theorem B (Kaneko [3]) Let A and B be two disjoint sets of points in the plane such that $|A|=|B|$ and no three points of $A \cup B$ are collinear. Then the geometric complete bipartite graph $K(A, B)$ contains a spanning tree T without crossings such that the maximum degree of T is at most 3 .

It is well-known that under the same condition in Theorem B, there are configurations of $A \cup B$ such that $K(A, B)$ does not contain a hamiltonian path without crossings (i.e., a spanning tree of maximum degree at most 2 without crossings) (see [2]). So we are led to the following problem. Given two disjoint sets A and B of points in the plane such that no three points of $A \cup B$ are collinear, if $|B|$ is large compared with $|A|$, then does $K(A, B)$ contain a path P without crossings such that $V(P)$ contains the set A ? The answer to the above question is in the affirmative, as we shall see now. We prove the following theorem.

Theorem 1 Let A and B be two disjoint sets of points in the plane such that no three points of $A \cup$ B are collinear, and let n be the number of points in A.
(i) If $|B| \geq(n+1)(2 n-4)+1$, then the geometric complete bipartite graph $K(A, B)$ contains a path P without crossings such that V (P contains the set A.
(ii) There exists a configuration of $A \cup B$ with $|B|=\frac{n^{2}}{16}+\frac{n}{2}-1$ such that in $K(A, B)$ every path containing the set A has at least one crossing.

In order to prove Theorem 1, we need some notation and definitions. For a set X of points in the plane, we denote by $\operatorname{conv}(X)$ the convex hull of X. The boundary of $\operatorname{conv}(X)$ is a polygon whose segments and extremes are called the edges and the vertices of $\operatorname{conv}(X)$, respectively. For two points x and y in the plane, we denote by $x y$ the straight line segment joining x to y which may be an edge of a geometric graph containing both x and y as it vertices. Let A be a set of point in the plane, let y be a vertex of $\operatorname{conv}(A)$ and let x be a point exterior to $\operatorname{conv}(A)$. Then we say that x sees y on $\operatorname{conv}(A)$ if the line segment $x y$ intersects $\operatorname{conv}(A)$ only at y.

Lemma 2 Let R and S be disjoint sets of points in the plane with $|R| \geq|S|$ such that no three points of $R \cup S$ are collinear, and let l be a line in the plane separating the set R and the set S. Let x and y be two vertices of $\operatorname{conv}(R \cup S)$ with $x \in R$ and $y \in S$ such that $x y$ is an edge of $\operatorname{conv}(R \cup S)$. Then in $K(R$, S) there exists a path P without crossings, such that
(i) the vertex x is an end of P, and
(ii) $V(P)$ contains S.

Proof We prove the lemma by induction on $|R \cup S|$. If $|S|=1$ then the lemma follows immediately, and so we may assume $|R| \geq|S| \geq 2$. Let z_{0} be the vertex of $\operatorname{conv}(R \cup S)$ with $z_{0} \in R$ such that $x z_{0}$ is an edge of $\operatorname{conv}(R \cup S)$. We consider $\operatorname{conv}(R \cup S-\{\mathrm{x}\})$. Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{\mathrm{m}}\right\}$ be the set of new
vertices of conv $(R \cup S-\{\mathrm{x}\})$ (possibly $Z=\emptyset$), i.e., $z_{1}, z_{2}, \ldots, z_{\mathrm{m}}$ are interior point of $\operatorname{conv}\left(R \cup S\right.$). Set z_{m+1} $=y$. Since $|R-\{\mathrm{x}\}| \geq 1$ and $|S|(\geq 2)>1$, there exist two vertices of $\operatorname{conv}(R \cup S-\{x\}) z_{i}$ and z_{i+1} such that $z_{i} \in R$ and $z_{i+1} \in S$, i.e., $z_{i} z_{i+1}$ is an edge of $\operatorname{conv}(R \cup S-\{x\})$. It is clear that the vertex x sees z_{i+1} on $\operatorname{conv}(R \cup S-\{x\})$. Now we consider $\operatorname{conv}\left(R \cup S-\left\{x, z_{i+1}\right\}\right)$. Let $Z^{\prime}=\left\{w_{1}, w_{2}, \ldots, w\right\}$ be the set of new vertices of $\operatorname{conv}\left(R \cup S-\left\{x, z_{i+1}\right\}\right)\left(\right.$ possibly $\left.Z^{\prime}=\emptyset\right)$, i.e., $w_{1}, w_{2}, \ldots, w_{k}$ are interior points of $\operatorname{conv}(R \cup S-\{x\})$. Let w_{k+1} be the vertex of $\operatorname{conv}(R \cup S-\{\mathrm{x}\})$ with $w_{k+1} \in S$ such that $z_{i+1} w_{k+1}$ is an edge of $\operatorname{conv}(R \cup S-\{x\})$. Set $w_{0}=z_{i}$. Since $|R-\{x\}| \geq 1$ and $\left|S-\left\{z_{i+1}\right\}\right| \geq 1$, by repeating the above method, there exist two vertices w_{j} and w_{j+1} of $\operatorname{conv}\left(R \cup S-\left\{x, z_{i+1}\right\}\right)$, such that $w_{j} \in R$ and w_{j+1} $\in S$ i.e., $w_{j} w_{j+1}$ is an edge of $\operatorname{conv}\left(R \cup S-\left\{x, z_{i+1}\right\}\right)$, and such that the vertex z_{i+1} sees w_{j} on $\operatorname{conv}(R$ $\left.\cup S-\left\{x, z_{i+1}\right\}\right)$. By the induction hypothesis, in $K\left(R-\{x\}, S-\left\{z_{i+1}\right\}\right)$ there exists a path P^{\prime} without crossings such that
(i) the vertex $w_{j}(\in R)$ is an end of P^{\prime}, and
(ii) $V\left(P^{\prime}\right)$ contains $S-\left\{z_{i+1}\right\}$.

Obviously $P=P^{\prime} \cup x z_{i+1} \cup z_{i+1} w_{j}$ is the desired path.
Now we proceed to prove part (i) of Theorem 1. We may assume that no two points of $A \cup B$ have the same x coordinate. Let $a_{1}, a_{2}, \ldots a_{n}$ be points of S sorted by their x-coordinate and let P_{i} be the vertical line which passes through the point $a_{i}, 1 \leq i \leq n$. These n lines separate the plane into $n+1$ regions and hence they separate the set B into $n+1$ disjoint subsets. Assume that these lines are directed upward. By the assumption, at least one subset contains at least $2 n-3$ points of B. We may assume that one of the region which contains at least $2 n-3$ points of B is bounded by the lines P_{j} and $P_{j+1}, 1 \leq j \leq n-1$. (The leftmost and rightmost unbounded regions can be treated similarly.) Let B_{j} be the subset of B between P_{j} and P_{j+1} i.e., $\left|B_{j}\right| \geq 2 n-3$. Let 10 be the line between P_{j} and P_{j+1} satisfying the following conditions:
(i) l_{0} passes through a point b_{0} of B_{j} and is directed upward,
(ii) Let B_{l} be the subset of $B_{j}-\left\{b_{0}\right\}$ to the left of l_{0} and let B_{r} be the subset of $B_{j}-\left\{b_{0}\right\}$ to the right of l_{0}. Then $\left|B_{l}\right| \geq 2 j-2$ and $\left|B_{r}\right| \geq 2 n-2 j-2$.

Let A_{l} be the subset of A to the left of l_{0} and let A_{r} be the subset of A to the right of l_{0}. Trivially $\left|A_{l}\right|=j$ and $\left|A_{r}\right|=n-j$. Let t_{1} and t_{2} be the two rays emanating from b_{0} such that t_{i} is tangent to $\operatorname{conv}\left(A_{l}\right)$ at $w_{i}, 1 \leq i \leq 2$, and t_{1} is above t_{2}. Also let t_{3} and t_{4} be the two rays emanating from b_{0} such that t_{i} is tangent to $\operatorname{conv}\left(A_{r}\right)$ at $w_{i}, 3 \leq i \leq 4$, and t_{3} is above t_{4}. (Notice that since no three points of A $\cup B$ are collinear, each ray contains no point of $B_{l} \cup B_{r}$.) Let B_{l}^{+}be the subset of B_{l} above the ray t_{2} and B_{I}^{-}the subset of B_{l} under the ray t_{1}. Also let B_{r}^{+}be the subset of B_{r} above the ray t_{4} and B_{r}^{-}the subset of B_{r} under the ray t_{3}. Since $\left|B_{l}\right| \geq 2 j-2$, we have either $\left|B_{l}^{+}\right| \geq j-1$ or $\left|B_{l}\right| \geq j-1$, say $\left|B_{l}^{+}\right| \geq j-1$. Similarly we have either $\left|B_{r}^{+}\right| \geq n-j-1$ or $\left|B_{r}^{-}\right| \geq n-j-1$, say $\left|B_{r}^{+}\right| \geq n-$ $j-1$. Consider now $K\left(B_{l}^{+} \cup\left\{b_{0}\right\}, A_{l}\right)$. Since $\left|B_{l}^{+} \cup\left\{b_{0}\right\}\right| \geq j=\left|A_{l}\right|$, applying Lemma 2 and letting $x=b_{0}$, in $K\left(B_{l}^{+} \cup\left\{b_{0}\right\}, A_{l}\right)$ we can find a path R_{l} without crossings such that
(i) the vertex b_{0} is an end of R_{l}, and
(ii) $V\left(R_{l}\right)$ contains A_{i}.

In a similar manner, in $\left.K\left(B_{r}^{+}\right) \cup\left\{b_{0}\right\}, A_{r}\right)$ we can find a path R_{r} without crossings such that
(i) the vertex b_{0} is an end of R_{r}, and
（ii）$V\left(R_{r}\right)$ contains A_{r} ．
Set $P=R_{l} \cup R_{r}$ ．Clearly P is a path in $K(A, B)$ without crossings such that $V(P)$ contains the set A ．

In order to show part（ii）of Theorem 1，suppose that $n=4 k$ and all points of $A \cup B$ lie on a cycle in the following order：
$a_{1}^{0}, a_{2}^{0}, \ldots, a_{k+2}^{0}, b_{1}^{0}, b_{2}^{0}, \ldots, b_{k}^{0}, a_{1}^{1}, a_{2}^{1}, b_{1}^{1}, b_{2}^{1}, \ldots, b_{k}^{1}$,
$a_{1}^{2}, a_{2}^{2}, b_{1}^{2}, b_{2}^{2}, \ldots, b_{k}^{2}, \ldots \ldots . ., a_{1}^{k-2}, a_{2}^{k-2}, b_{1}^{k-2}, b_{2}^{k-2}, \ldots, b_{k}^{k-2}$ ，
$a_{1}^{k-1}, a_{2}^{k-1}, \ldots, a_{k+2}^{k-1}, b_{1}^{k-1}, b_{2}^{k-1}, \ldots, b_{3 k-1}^{k-1}$ ，
where a_{j}^{i}＇s are points in A and $b_{j}^{\text {i }}$＇s are points in B ．It is not difficult to show that $|A|=n$ and $|B|=$ $\frac{n^{2}}{16}+\frac{n}{2}-1$ and that in $K(A, B)$ every path containing the set A has at least one crossing． This completes the proof of Theorem 1.

ACKNOWLEDGMENT

We would like to thank Professor H．Enomoto for showing us the configuration．

References

［1］M．Abellanas，J．Garcia，G．Hernández，M．Noy and P．Ramos，Bipartite embeddings of trees in the plane，Graph Drawing＇96，Springer Verlag LNCS 1190，（1996），1－10
［2］J．Akiyama and J．Urrutia，Simple alternating path problem，Discrete Mathematics 84 no．1，（1990）， 101－103
［3］A．Kaneko，On the maximum degree of bipartite embeddings of trees in the plane， （著者：かねこ あつし工学院大学，かのう みきお芡城大学 受付：平成12年12月22日）

