ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 紀要類
  2. 情報研究
  3. 第17号

The Minimum-weight k-Ideal Problem on a Directed Tree Poset and Its Polyhedron

https://bunkyo.repo.nii.ac.jp/records/3450
https://bunkyo.repo.nii.ac.jp/records/3450
ae84bf40-425c-45db-b3eb-c5949cec6af0
名前 / ファイル ライセンス アクション
BKSJ170015.pdf BKSJ170015.pdf (524.1 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2012-01-17
タイトル
タイトル The Minimum-weight k-Ideal Problem on a Directed Tree Poset and Its Polyhedron
言語
言語 eng
資源タイプ
資源タイプ departmental bulletin paper
著者 Nemoto,Toshio

× Nemoto,Toshio

Nemoto,Toshio

Search repository
所属機関
値 文教大学情報学部
内容記述
内容記述タイプ Abstract
内容記述 Suppose we are given a poset (partially ordered set) P= (V,?), a real-valued weight w(v) associated with each element v ∈ V and a positive integer K. We consider the problem which asks to find an ideal of size K of P such that the sum of the weights of the elements of this ideal is the minimum for all ideals that can be constructed from P. We call this problem the minimum-weight x-ideal problem. In this paper we explore a further possibility for a solvable case of this problem because it has been proven that this problem is NP-hard even if the Hasse diagram representing a given poset is a bipartite graph. We obtain two new results. First, we describe an O(K2n) algorithm on the special poset whose Hasse diagram is a directed tree, which is called a directed tree poset. Here n is the cardinality of the underlying set of the given poset. This outperforms an O(n4) algorithm that is the best previously known. Secondly, we show a characteristic of the polyhedron obtained from the LP-relaxation of the K-ideal problem on a directed tree poset. This is the first step to solve the other type K-ideal problems from the LP-relaxation technique.
書誌情報 情報研究
en : Information and Communication Studies

巻 17, p. 265-274, 発行日 1996-01-01
出版者
出版者 文教大学
ISSN
収録物識別子タイプ ISSN
収録物識別子 03893367
著者版フラグ
出版タイプ VoR
本文言語
値 英語
ID
値 BKSJ170015
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 16:06:22.131738
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3