WEKO3
インデックスリンク
アイテム
平面上の3角格子と離散構造問題
https://bunkyo.repo.nii.ac.jp/records/5751
https://bunkyo.repo.nii.ac.jp/records/575116a5dcfc-50e7-43fc-a63b-99b89db05ee5
名前 / ファイル | ライセンス | アクション |
---|---|---|
BKSJ250006.pdf (811.7 kB)
|
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2011-02-23 | |||||
タイトル | ||||||
タイトル | 平面上の3角格子と離散構造問題 | |||||
タイトル | ||||||
タイトル | Triangle Lattice in the Plane and Discrete Structure Problems | |||||
言語 | en | |||||
言語 | ||||||
言語 | jpn | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | departmental bulletin paper | |||||
タイトル カナ | ||||||
その他のタイトル | ヘイメンジョウ ノ 3カクコウシ ト リサン コウゾウ モンダイ | |||||
著者 |
加納, 幹雄
× 加納, 幹雄× 柳, 英樹× 阿部, 貴之× 沖津, 宏泰× 染谷, 顕正× 濱田, 理恵× 松浦, 亮× 関山, 健一× 原田, 大輔× 佐々木, 哲也× 藤田, 宏明× 星, 誠司 |
|||||
著者 | ||||||
値 | Kano, Mikio. | |||||
著者 | ||||||
値 | Yanagi, Hideki. | |||||
著者 | ||||||
値 | Abe, Takayuki | |||||
著者 | ||||||
値 | Okitsu, Hiroyasu | |||||
著者 | ||||||
値 | Someya, Kensyo | |||||
著者 | ||||||
値 | Hamada, Rie | |||||
著者 | ||||||
値 | Matsu-ura, Ryo | |||||
著者 | ||||||
値 | Sekiyama, Kenichi | |||||
著者 | ||||||
値 | Harada, Daisuke | |||||
著者 | ||||||
値 | Sasaki, Tetsuya | |||||
著者 | ||||||
値 | Fujita, Hiroaki | |||||
著者 | ||||||
値 | Hoshi, Seiji | |||||
所属機関 | ||||||
値 | 茨城大学工学部 | |||||
所属機関 | ||||||
値 | 茨城大学工学部 | |||||
所属機関 | ||||||
値 | 茨城大学工学部 | |||||
所属機関 | ||||||
値 | 茨城大学工学部 | |||||
所属機関 | ||||||
値 | 茨城大学工学部 | |||||
所属機関 | ||||||
値 | 茨城大学工学部(元) | |||||
所属機関 | ||||||
値 | 茨城大学工学部(元) | |||||
所属機関 | ||||||
値 | 茨城大学工学部(元) | |||||
所属機関 | ||||||
値 | 茨城大学工学部(元) | |||||
所属機関 | ||||||
値 | 茨城大学工学部(元) | |||||
所属機関 | ||||||
値 | 茨城大学工学部(元) | |||||
所属機関 | ||||||
値 | 茨城大学工学部(元) | |||||
内容記述 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | We consider a triangle lattice in the plane instead of an usual quadrangle lattice, and study some discrete structure problems on the triangle lattice. Namely, we consider life-games, graph drawings, Voronoi diagrams, channel routing problems, and other distributing problems on the triangle lattice in the plane, which are usually considered on the quadrangle lattice. The usual quadrangle lattice is not a maximal planar graph, but the triangle lattice is a maximal planar graph. Moreover edges of the usual lattice are parallel to x-axis or y-axis, and have only four directions. On the other hand, edges of the triangle lattice have six directions, and so its edges are distributed more uniformly than the usual lattice. From these point of view, we define some problems on the triangle lattice, and show that the triangle lattice has some advantage of these problems by some solutions obtained by computer. \n 平面上の3角格子において,ライフゲーム,平面グラフの描画,ボロノイ図,配線問題など考える.これらは従来普通の格子,すなわち4角格子において考えられ,また研究されてきた問題である.しかし,平面グラフとしてみたとき,3角格子は4角格子よりも密で均一性が高い.これからより良い解とか,4角格子とは異なる特色のある振る舞いが期待されるが,実際上の問題においてそのような結果を得た.これらの結果をまとめて報告する. |
|||||
書誌情報 |
情報研究 en : Information and Communication Studies 巻 25, p. 31-41, 発行日 2000-01-01 |
|||||
出版者 | ||||||
出版者 | 文教大学 | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 03893367 | |||||
内容記述 | ||||||
内容記述タイプ | Other | |||||
内容記述 | 情報学シンポジウム特集号 | |||||
著者版フラグ | ||||||
出版タイプ | VoR | |||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||
本文言語 | ||||||
値 | 日本語 | |||||
ID | ||||||
値 | BKSJ250006 | |||||
作成日 | ||||||
日付 | 2011-02-23 | |||||
日付タイプ | Created |